1. Consider the following statements :
2. $f(x)=\ln x$ is increasing in $(0, \infty)$
3. $g(x)=e^{x}+e^{\frac{1}{x}}$ is decreasing in $(0, \infty)$
Which of the statements given above is/are correct?
(a) 1 only
(b) 2 only
(c) Both 1 and 2
(d) Neither 1 nor 2
4. What is the derivative of $\sin ^{2} x$ with respect to $\cos ^{2} x$?
(4) -1
(b) 1
(c) $\sin 2 x$
(d) $\cos 2 x$
5. For what value of m with $m<0$, is the area bounded by the lines $y=x, y=m x$ and $x=2$ equal to 3 ?
(a) $-\frac{1}{2}$
(b) -1
(c) $-\frac{3}{2}$
(d) -2
6. What is the derivative of $\operatorname{cosec}\left(x^{\circ}\right)$?
(a) $-\operatorname{cosec}\left(x^{\circ}\right) \cot \left(x^{\circ}\right)$
(b) $-\frac{\pi}{180} \operatorname{cosec}\left(x^{\circ}\right) \cot \left(x^{\circ}\right)$
(c) $\frac{\pi}{180} \operatorname{cosec}\left(x^{\circ}\right) \cot \left(x^{\circ}\right)$
(d) $-\frac{\pi}{180} \operatorname{cosec}(x) \cot (x)$
7. A solution of the differential equation $\left(\frac{d y}{d x}\right)^{2}-x \frac{d y}{d x}=0$ is
(a) $y=2 x$
(b) $y=2 x+4$
(c) $y=x^{2}-1$
(4) $y=\frac{\left(x^{2}-2\right)}{2}$
8. If $f(x)=x^{2}+2$ and $g(x)=2 x-3$, then what is $(f g)(1)$ equal to ?

(a) 3

(b) 1
(c) -2
(d) -3
7. What is the range of the function $f(x)=x+|x|$ if the domain is the set of real numbers ?
(a) $(0, \infty)$
(4) $[0, \infty)$
(c) $(-\infty, \infty)$
(d) $[1, \infty)$
8. If $f(x)=x\left(4 x^{2}-3\right)$, then what is $f(\sin \theta)$ equal to ?

- $-\sin 3 \theta$
(b) $-\cos 3 \theta$
(c) $\sin 3 \theta$
(d) $-\sin 4 \theta$

9. What is $\lim _{x \rightarrow 5} \frac{5-x}{|x-5|}$ equal to ?
(a) -1
(b) 0
(c) 1
10. Limit does not exist
11. What is $\lim _{x \rightarrow 1} \frac{x^{9}-1}{x^{3}-1}$ equal to ?
(a) -1
(b) -3
(a) 3
(d) Limit does not exist

Consider the following for the next three (03) items that follow :

Let $f(x)=P e^{x}+Q e^{2 x}+R e^{3 x}$, where P, Q, R are real numbers. Further $f(0)=6$, $f^{\prime}(\ln 3)=282$ and $\int_{0}^{\ln 2} f(x) d x=11$
11.) What is the value of Q ?
(a) 1
(4) 2
(c) 3
(d) 4
12. What is the value of R ?
(a) 1
(b) 2

4
(d) 4
13. What is $f^{\prime}(0)$ equal to ?
(a) 18
(b) 16
(c) 15

Consider the following for the next two (02) items that follow :

Suppose E is the differential equation representing family of curves $y^{2}=2 c x+2 c \sqrt{c}$ where c is a positive parameter.
14. What is the order of the differential equation?
(a) 1
(b) 2
(c) 3
(d) 4
15. What is the degree of the differential equation?
(a) 2
$\sqrt{5} 3$
(c) 4
(d) Degree does not exist

Consider the following for the next three (03) items that follow :

Let $f(x)=\left|\begin{array}{ccc}\cos x & x & 1 \\ 2 \sin x & x^{2} & 2 x \\ \tan x & x & 1\end{array}\right|$
16. What is $f(0)$ equal to ?
(a) -1
(4) 0
(c) 1
(d) 2
17. What is $\lim _{x \rightarrow 0} \frac{f(x)}{x}$ equal to ?
(a) -1
(1) 0
(c) 1
(d) 2
18. What is $\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}$ equal to ?
(a) -1
(b) 0
(c) 1
(d) 2

Consider the following for the next two (02) items that follow :

Let $f(x)=\sin \left[\pi^{2}\right] x+\cos \left[-\pi^{2}\right] x$ where [.] is a greatest integer function
19. What is $f\left(\frac{\pi}{2}\right)$ equal to ?
(a) -1
$\sqrt[4]{ } 0$
(c) 1
(d) 2
20. What is $f\left(\frac{\pi}{4}\right)$ equal to?
(a) $-\frac{1}{\sqrt{2}}$
(b) -1
(c) 1
(4) $\frac{1}{\sqrt{2}}$

Consider the following for the next two (02) items that follow :

Let $\Delta(a, b, c, \alpha)=\left|\begin{array}{ccc}a & b & a \alpha+b \\ b & c & b \alpha+c \\ a \alpha+b & b \alpha+c & 0\end{array}\right|$
21. If $\Delta(a, b, c, \alpha)=0$ for every $\alpha>0$, then which one of the following is correct?
(a) a, b, c are in AP
f) a, b, c are in GP
(c) $a, 2 b, c$ are in AP
(d) $a, 2 b, c$ are in GP
22. If $\Delta(7,4,2, \alpha)=0$, then α is a root of which one of the following equations ?
(a) $7 x^{2}+4 x+2=0$
(b) $7 x^{2}-4 x+2=0$

7 $7 x^{2}+8 x+2=0$
(d) $7 x^{2}-8 x+2=0$

Consider the following for the next two (02) items that follow :

Given that $m(\theta)=\cot ^{2} \theta+n^{2} \tan ^{2} \theta+2 n$, where n is a fixed positive real number.
23. What is the least value of $m(\theta)$?
(a) n
(b) $2 n$
(c) $3 n$
$(\stackrel{y}{ }) 4 n$
24. Under what condition does m attain the least value?
(a) $n=\tan ^{2} \theta$
(b) $n=\cot ^{2} \theta$
(c) $n=\sin ^{2} \theta$
(d) $n=\cos ^{2} \theta$

Consider the following for the next two (02) items that follow :

A quadrilateral is formed by the lines $x=0, y=0, x+y=1$ and $6 x+y=3$.
25. What is the equation of diagonal through origin?
(a) $3 x+y=0$
(b) $2 x+3 y=0$
$453 x-2 y=0$
(d) $3 x+2 y=0$
26. What is the equation of other diagonal?
(a) $x+2 y-1=0$
(b) $x-2 y-1=0$
(c) $2 x+y+1=0$
(6) $2 x+y-1=0$

Consider the following for the next two (02) items that follow :
$P(x, y)$ is any point on the ellipse $x^{2}+4 y^{2}=1$. Let E, F be the foci of the ellipse.
27. What is $P E+P F$ equal to ?
(a) 1
(6) 2
(c) 3
(d) 4
28. Consider the following points :

1. $\left(\frac{\sqrt{3}}{2}, 0\right)$
2. $\left(\frac{\sqrt{3}}{2}, \frac{1}{4}\right)$
3. $\left(\frac{\sqrt{3}}{2},-\frac{1}{4}\right)$

Which of the above points lie on latus rectum of ellipse?
(a) 1 and 2 only
(b) 2 and 3 only
(c) 1 and 3 only
(d) 1,2 and 3

Consider the following for the next two (02) items that follow :

The line $y=x$ partitions the circle

$$
(x-a)^{2}+y^{2}=a^{2} \text { in two segments. }
$$

29. What is the area of minor segment?
$\sqrt{4} \frac{(\pi-2) a^{2}}{4}$
(b) $\frac{(\pi-1) a^{2}}{4}$
(c) $\frac{(\pi-2) a^{2}}{2}$
(d) $\frac{(\pi-1) a^{2}}{2}$
30. What is the area of major segment?
(a) $\frac{(3 \pi-2) a^{2}}{4}$
(8) $\frac{(3 \pi+2) a^{2}}{4}$
(c) $\frac{(3 \pi-2) a^{2}}{2}$
(d) $\frac{(3 \pi+2) a^{2}}{2}$
31. Consider the following frequency distribution:

x	1	2	3	5
f	4	6	9	7

What is the value of median of the distribution?
(a) 1
(b) 2
(v) 3
(d) 3.5
32. For data $-1,1,4,3,8,12,17,19,9$, 11 ; if M is the median of first 5 observations and N is the median of last five observations, then what is the value of $4 M-N$?
(a) 7
(b) 4
(c) 1

0
33. Let P, Q, R represent mean, median and mode. If for some distribution $5 P=4 Q=\frac{R}{2}$, then what is $\frac{P+Q}{2 P+07 R}$ equal to?
(a) $\frac{1}{12}$
(b) $\frac{1}{7}$
(c) $\frac{2}{9}$
(d) $\frac{1}{4}$
34. If G is the geometric mean of numbers $1,2,2^{2}, 2^{3}, \ldots, 2^{n-1}$, then what is the value of $1+2 \log _{2} G$?
(a) 1
(b) 4
(c) $n-1$
(d) n
35. If H is the harmonic mean of numbers $1,2,2^{2}, 2^{3}, \ldots, 2^{n-1}$, then what is n / H equal to ?
(a) $2-\frac{1}{2^{n+1}}$
(b) $2-\frac{1}{2^{n-1}}$
(c) $2+\frac{1}{2^{n-1}}$
(d) $2-\frac{1}{2^{n}}$
36. Let P be the median, Q be the mean and R be the mode of observations $x_{1}, x_{2}, x_{3}, \ldots x_{n}$. Let $S=\sum_{i=1}^{n}\left(2 x_{i}-a\right)^{2}$. S takes minimum value, when a is equal to
(a) P
(b) $\frac{Q}{2}$
(c) $2 Q$
(d) R
37. One bag contains 3 white and 2 black balls, another bag contains 2 white and 3 black balls. Two balls are drawn from the first bag and put it. into the second bag and then a ball is drawn from the second bag. What is the probabilty that it is white?
(a) $\frac{6}{7}$
(b) $\frac{33}{70} \quad$ Ans - 23/50
(c) $\frac{3}{10}$
(d) $\frac{1}{70}$
38. Three dice are thrown. What is the probability that each face shows only multiples of 3 ?
(a) $\frac{1}{9}$
(b) $\frac{1}{18}$
(v) $\frac{1}{27}$
(d) $\frac{1}{3}$
39. What is the probability that the month of December has 5 Sundays?
(a) 1
(b) $\frac{1}{4}$
(b) $\frac{3}{7}$
(d) $\frac{2}{7}$
40. A natural number n is chosen from the first 50 natural numbers. What is the probability that $n+\frac{50}{n}<50$?
(a) $\frac{23}{25}$
(4) $\frac{47}{50}$
(c) $\frac{24}{25}$
(d) $\frac{49}{50}$
41. How many real numbers satisfy the equation $|x-4|+|x-7|=15$?
(a) Only one
(a) Only two
(c) Only three
(d) Infinitely many
42. A mapping $f: A \rightarrow B$ defined as $f(x)=\frac{2 x+3}{3 x+5}, x \in A$. If f is to be onto, then what are A and B equal to ?
(a) $A=R \backslash\left\{-\frac{5}{3}\right\}$ and $B=R \backslash\left\{-\frac{2}{3}\right\}$
(b) $A=R$ and $B=R \backslash\left\{-\frac{5}{3}\right\}$
(c) $A=R \backslash\left\{-\frac{3}{2}\right\}$ and $B=R \backslash\{0\}$
$\sqrt[4]{ } A=R \backslash\left\{-\frac{5}{3}\right\}$ and $B=R \backslash\left\{\frac{2}{3}\right\}$
43. α and β are distinct real roots of the quadratic equation $x^{2}+a x+b=0$. Which of the following statements is/are sufficient to find α ?

$$
\begin{aligned}
& \text { 1. } \alpha+\beta=0, \alpha^{2}+\beta^{2}=2 \\
& \text { 2. } \alpha \beta^{2}=-1, a=0
\end{aligned}
$$

Select the correct answer using the code given below :
(a) 1 only
(b) 2 only
(c) Both 1 and 2
(d) Neither 1 nor 2
44. If the sixth term in the binomial expansion of $\left(x^{-\frac{8}{3}}+x^{2} \log _{10} x\right)^{8}$ is 5600 , then what is the value of x ?
(a) 6
(b) 8

9
(d) 10
45. How many terms are there in the expansion of $(3 x-y)^{4}(x+3 y)^{4}$?
(a) 9
(b) 12
$\sqrt[4]{ } 15$
(d) 17
46. p, q, r and s are in AP such that $p+s=8$ and $q r=15$. What is the difference between largest and smallest numbers?
(a) 6
(b) 5
(c) 4
(d) 3
47. Consider the following statements for a fixed natural number n :

1. $C(n, r)$ is greatest if $n=2 r$
2. $C(n, r)$ is greatest if $n=2 r-1$ and $n=2 r+1$

Which of the statements given above is/are correct?
(a) 1 only
(b) 2 only
(4) Both 1 and 2
(d) Neither 1 nor 2
48. m parallel lines cut n parallel lines giving rise to 60 parallelograms. What is the value of $(m+n)$?
(a) 6
(b) 7
(c) 8
4. 9
49. Let x be the number of permutations of the word 'PERMUTATIONS' and y be the number of permutations of the word 'COMBINATIONS'. Which one of the following is correct?
(a) $x=y$
(b) $y=2 x$
(c) $x=4 y$
(d) $y=4 x$
50. 5-digit numbers are formed using the digits $0,1,2,4,5$ without repetition. What is the percentage of numbers which are greater than 50,000 ?
(a) 20%
(b) 25%
(c) $\frac{100}{3} \%$
(d) $\frac{110}{3} \%$
51. If $2-i \sqrt{3}$ where $i=\sqrt{-1}$ is a root of the equation $x^{2}+a x+b=0$, then what is the value of $(a+b)$?
(a) - 11
(b) -3
(c) 0
$\sqrt[4]{ } 3$
52. If $z=\frac{1+i \sqrt{3}}{1-i \sqrt{3}}$ where $i=\sqrt{-1}$, then what is the argument of z ?
(a) $\frac{\pi}{3}$
(b) $\frac{2 \pi}{3}$
(c) $\frac{4 \pi}{3}$
(d) $\frac{5 \pi}{6}$
53. If a, b, c are in AP , then what is

$$
\left|\begin{array}{lll}
x+1 & x+2 & x+3 \\
x+2 & x+3 & x+4 \\
x+a & x+b & x+3
\end{array}\right| \text { equal to ? }
$$

(a) -1
(b) 0
(c) 1
(d) 2
54. If $\log _{x} a, a^{x}$ and $\log _{b} x$ are in GP, then what is x equal to?
(a) $\log _{a}\left(\log _{b} a\right)$
(b) $\log _{b}\left(\log _{a} b\right)$
$(5) \frac{\log _{a}\left(\log _{b} a\right)}{2}$
(d) $\frac{\log _{b}\left(\log _{a} b\right)}{2}$
55. If $2^{\frac{1}{c}}, 2^{\frac{b}{a c}}, 2^{\frac{1}{a}}$ are in GP, then which one of the following is correct ?
a) a, b, c are in AP
(b) a, b, c are in GP
(c) a, b, c are in HP
(d) $a b, b c, c a$ are in AP
56. The first and the second terms of an AP are $\frac{5}{2}$ and $\frac{23}{12}$ respectively. If $n^{\text {th }}$ term is the largest negative term, what is the value of n ?
(a) 5
(6) 6
(c) 7
(d) n cannot be determined
57. For how many integral values of k, the

- equation $x^{2}-4 x+k=0$, where k is an integer has real roots and both of them lie in the interval $(0,5)$?
(a) 3
(2) 4
(c) 5
(d) 6

58. In an AP, the first term is x and the sum of the first n terms is zero. What is the sum of next m terms?
(a) $\frac{m x(m+n)}{n-1}$
(4) $\frac{m x(m+n)}{1-n}$
(c) $\frac{n x(m+n)}{m-1}$
(d) $\frac{n x(m+n)}{1-m}$
59. Consider the following statement :
60. $(25)!+1$ is divisible by 26
61. (6)! +1 is divisible by 7

Which of the above statements is/are correct?
(a) 1 only
(1) 2 only
(c) Both 1 and 2
(d) Neither 1 nor 2
60. If z is a complex number such that $\frac{z-1}{z+1}$ is purely imaginary, then what is $|z|$ equal to ?
(a) $\frac{1}{2}$
(b) $\frac{2}{3}$
(4) 1
(d) 2
61. If ω is a non-real cube root of 1 , then what is the value of $\left|\frac{1-\omega}{\omega+\omega^{2}}\right|$?
(a) $\sqrt{3}$
(b) $\sqrt{2}$
(c) 1
(d) $\frac{4}{\sqrt{3}}$
62. What is the number of 6 -digit numbers that can be formed only by using $0,1,2,3,4$ and 5 (each once); and divisible by 6 ?
(a) 96
(b) 120
(c) 192
(a) 312
63. What is the binary number equivalent to decimal number 1011 ?
(a) 1011
(b) 111011

Ans - 1111110011
(c) 11111001
(d) 111110011
64. Let A be a matrix of order 3×3 and $|A|=4$. If $|2 \operatorname{adj}(3 A)|=2^{\alpha} 3^{\beta}$, then what is the value of $(\alpha+\beta)$?
(a) 12
(a) 13
(c) 17
(d) 24
65. If α and β are the distinct roots of equation $x^{2}-x+1=0$, then what is the value of $\left|\frac{\alpha^{100}+\beta^{100}}{\alpha^{100}-\beta^{100}}\right|$?
(a) $\sqrt{3}$
(b) $\sqrt{2}$
(c) 1
(d) $\frac{1}{\sqrt{3}}$
66. Let A and B be symmetric matríces of same order, then which one of the following is correct regarding $(A B-B A)$?

1. Its diagonal entries are equal but nonzero
2. The sum of its non-diagonal entries is zero

Select the correct answer using the code given below :
(a) 1 only
+5 2 only
(c) Both 1 and 2
(d) Neither 1 nor 2
67. Consider the following statements in respect of square matrices A, B, C each of same order n :

1. $A B=A C \Rightarrow B=C$ if A is nonsingular
2. If $B X=C X$ for every column matrix X having n rows then $B=C$

Which of the statements given above is/are correct?

1 only
(1) 2 only
(c) Both 1 and 2
(d) Neither 1 nor 2
68. The system of linear equations $x+2 y+z=4,2 x+4 y+2 z=8$ and $3 x+6 y+3 z=10$ has
(a) a unique solution
(b) infinite many solutions
(c) no solution
(d) exactly three solutions
69. Let $A X=B$ be a system of 3 linear equations with 3 -unknowns. Let X_{1} and X_{2} be its two distinct solutions. If the combination $a X_{1}+b X_{2}$ is a solution of $A X=B$; where a, b are real numbers, then which one of the following is correct?
(a) $a=b$
D) $a+b=1$
(c) $a+b=0$
(d) $a-b=1$
70. What is the sum of the roots of the equation $\left|\begin{array}{ccc}0 & x-a & x-b \\ 0 & 0 & x-c \\ x+b & x+c & 1\end{array}\right|=0$?
(a) $a+b+c$
(5) $a-b+c$
(c) $a+b-c$
(d) $a-b-c$

Consider the following for the next two E(02) items that follow :
Let $A(1,-1,2)$ and $B(2,1,-1)$ be the end points of the diameter of the sphere
$x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z-1=0$.
71. What is $u+v+w$ equal to ?
(a) -2
(b) -1
(c) 1
(d) 2
72. If $P(x, y, z)$ is any point on the sphere, then what is $P A^{2}+P B^{2}$ equal to?
(a) 15
(a) 14
(c) 13
(d) 6.5

Consider the following for the next two (02) items that follow :

Consider two lines whose direction ratios are $(2,-1,2)$ and $(k, 3,5)$. They are inclined at an angle $\frac{\pi}{4}$.
73. What is the value of k ?
(a) 4
(b) 2
(c) 1
(d) -1
74. What are the direction ratios of a line which is perpendicular to both the lines?
(a) $(1,2,10)$
(b) $(-1,-2,10)$
(c) $(11,12,-10)$
$(11,2,-10)$
Consider the following for the next two (02) items that follow :

Let $\vec{a}=3 \hat{i}+3 \hat{j}+3 \hat{k}$ and $\vec{c}=\hat{j}-\hat{k}$. Let \vec{b} be such that $\vec{a} \cdot \vec{b}=27$ and $\vec{a} \times \vec{b}=\overrightarrow{9 c}$
27. What is \vec{b} equal to ?
(a) $3 \hat{i}+4 \hat{j}+2 \hat{k}$
(7) $5 \hat{i}+2 \hat{j}+2 \hat{k}$
(c) $5 \hat{i}-2 \hat{j}+6 \hat{k}$
(d) $3 \hat{i}+3 \hat{j}+4 \hat{k}$
76. What is the angle between $(\vec{a}+\vec{b})$ and \vec{c} ?
(1) $\frac{\pi}{2}$
(d) $\frac{32}{81}$
(b) $\frac{\pi}{3}$
(c) $\frac{\pi}{4}$
(d) $\frac{\pi}{6}$

Consider the following for the next two (02) items that follow :

Let a vector $\vec{a}=4 \hat{i}-8 \hat{j}+\hat{k}$ make angles α, β, γ with the positive directions of x, y, z axes respectively.
77. What is $\cos \alpha$ equal to?
(a) $\frac{1}{3}$
(8) $\frac{4}{9}$
(c) $\frac{5}{9}$
(d) $\frac{2}{3}$
18. What is $\cos 2 \beta+\cos 2 \gamma$ equal to ?
(a) $-\frac{32}{81}$
(b) $-\frac{16}{81}$
(c) $\sqrt{6}$
(d) $\sqrt{3}$
(c) $\frac{16}{81}$ (02) items that follow :

1. $(-1,-3,1)$
2. $(-1,3,2)$
3. $(-2,5,3)$
(d) 1,2 and 3
(a) 2
(b) 3

Consider the following for the next two

The position vectors of two points A and B are $\hat{i}-\hat{j}$ and $\hat{j}+\hat{k}$ respectively.
79. Consider the following points :

Which of the above points lie on the, line joining A and B ?
(a) 1 and 2 only
(4) 2 and 3 only
(c) 1 and 3 only
80. What is the magnitude of $\overrightarrow{A B}$?
81. The mean and variance of five observations are 14 and 13.2 respectively. Three of the five observations are 11, 16 and 20 . What are the other two observations?
(a) 8 and 15
(b) 9 and 14
(4.) 10 and 13
(d) 11 and 12
82. Let A and B be two independent events such that
$P(\bar{A})=0.7, P(\bar{B})=k, P(A \cup B)=0.8$.
What is the value of k ?
(a) $\frac{5}{7}$
(b) $\frac{4}{7}$
(c) $\frac{2}{7}$
(d) $\frac{1}{7}$
83. A biased coin with the probability of getting head equal to $\frac{1}{4}$ is tossed five times. What is the probability of getting tail in all the first four tosses followed by head?
(a) $\frac{81}{512}$
(b) $\frac{81}{1024}$
(c) $\frac{81}{256}$
(d) $\frac{27}{1024}$
84. A coin is biased so that heads comes up thrice as likely as tails. In four independent tosses of the coin, what is probability of getting exactly three heads?
(a) $\frac{81}{256}$
(6) $\frac{27}{64}$
(c) $\frac{27}{256}$
(d) $\frac{9}{256}$
85. Let X and Y be two random variables such that $X+Y=100$. If X follows Binomial distribution with parameters $n=100$ and $p=\frac{4}{5}$, what is the variance of Y ?
(a) 1
(b) $\frac{1}{2}$
(4) 16
(d) $\frac{1}{16}$
86. If two lines of regression are $x+4 y+1=0$ and $4 x+9 y+7=0$, then what is the value of x when $y=-3$?
(a) +13
(b) -5
(c) 5
(d) 7
87. The central angles p, q, r and s (in degrees) of four sectors in a Pie Chart satisfy the relation $9 p=3 q=$ $2 r=6 \mathrm{~s}$. What is the value of $4 p-q$?
(a) 12
(b) 24
(c) 30

36
88. The observations $4,1,4,3,6,2,1$, $3,4,5,1,6$ are outputs of 12 dices thrown simultaneously. If m and M are means of lowest 8 observations and highest 4 observations respectively, then what is $(2 m+M)$ equal to ?
(a) 10
(b) 12
(c) 17
(d) 21
89. A bivariate data set contains only two points $(-1,1)$ and $(3,2)$. What will be the line of regression of y on x ?
(4) $x-4 y+5=0$
(b) $3 x+2 y-1=0$
(c) $x+4 y+1=0$
(d) $5 x-4 y+1=0$
90. A die is thrown 10 times and obtained the following outputs :
$1,2,1,1,2,1,4,6,5,4$
What will be the mode of data so obtained?
(a) 6
(b) 4
(c) 2

1
Consider the following for the next three (03) items that follow :

Let $I_{1}=\int_{0}^{\pi} \frac{x}{1+\cos ^{2} x} d x$ and

$$
I_{2}=\int_{0}^{\pi} \frac{1}{1+\sin ^{2} x} d x
$$

91. What is the value of $\frac{I_{1}+I_{2}}{I_{1}-I_{2}}$?
(a) 1
(b) π
(c) π^{2}
($\frac{\pi+1}{\pi-1}$
92. What is the value of $8 I_{1}^{2}$?
(a) π
(b) π^{2}
(c) π^{3}
$\sqrt{12}) \pi^{4}$
93. What is the value of I_{2} ?
(a) $\frac{\pi}{\sqrt{2}}$
(4) $\frac{\pi}{2 \sqrt{2}}$
(c) $\frac{3 \pi}{2 \sqrt{2}}$
(d) $\frac{\pi}{4 \sqrt{2}}$

Consider the following for the next two (02) items that follow :

Let $l=\int_{a}^{b} \frac{|x|}{x} d x, \quad a<b$
94. What is l equal to when $a<0<b$?

$$
\sqrt{a} a+b
$$

(b) $a-b$
(c) $b-a$
(d) $\frac{(a+b)}{2}$
(b) -1

- $\frac{1}{2}$
(d) 2

98. What is the derivative of $f \circ f(x)$, where $1<x<2$?
(a) $\frac{1}{\ln x}$
(2) $\frac{1}{x \ln x}$
(c) $-\frac{1}{\ln x}$
(d) $-\frac{1}{x \ln x}$

Consider the following for the next two (02) items that follow :

Let $f(x)=\left\{\begin{array}{c}x+6, x \leqslant 1 \\ p x+q, 1<x<2 \\ 5 x, x \geqslant 2\end{array}\right.$
and $f(x)$ is continuous
99. What is the value of p ?
(a) 2
45) 3
(c) 4
(d) 5
100. What is the value of q ?
(a) 2
(b) 3
(c) 4
(d) 5

Consider the following for the next two (02) items that follow :

Consider the function $f(x)=|x-2|+|3-x|+|4-x|$, where $x \in R$.
101. At what value of x does the function attain minimum value?
(a) 2
(4) 3
(c) 4
(d) 0
102. What is the minimum value of the function?
$\sqrt[6]{ } 2$
(b) 3
(c) 4
(d) 0

Consider the following for the next two (02) items that follow :

Consider the sum
$S=0!+1!+2!+3!+4!+\ldots+100!$
103. If the sum S is divided by 8 , what is the remainder?
(a) 0
(b) 1
-(c) 2
(d) Cannot be determined
104. If the sum S is divided by 60 , what is the remainder?
(a) 1
(b) 3
(c) 17

34

Consider the following for the next two (02) items that follow :

In a triangle $P Q R, P$ is the largest angle and $\cos P=\frac{1}{3}$. Further the in-circle of the triangle touches the sides $P Q, Q R$ and $R P$ at N, L and M respectively such that the lengths $P N, Q L$ and $R M$ are $n, n+2, n+4$ respectively where n is an integer.
105. What is the value of n ?
(a) 4
(b) 6
(5) 8
(d) 10
106. What is the length of the smallest side?
(a) 12
(b) 14
(c) 16

Consider the following for the next two (02) items that follow :

Given that
$\sin x+\cos x+\tan x+\cot x+\sec x+\operatorname{cosec} x=7$
107. The given equation can be reduced to
(v) $\sin ^{2} 2 x-44 \sin 2 x+36=0$
(b) $\sin ^{2} 2 x+44 \sin 2 x-36=0$
(c) $\sin ^{2} 2 x-22 \sin 2 x+18=0$
(d) $\sin ^{2} 2 x+22 \sin 2 x-18=0$
108. If $\sin 2 x=a-b \sqrt{c}$, where a and b are natural numbers and c is prime number, then what is the value of $a-b+2 c$?
(a) 0
(b) 14
(c) 21
(d) 28

Consider the following for the next two (02) items that follow :

A quadratic equation is given by $(3+2 \sqrt{2}) x^{2}-(4+2 \sqrt{3}) x+(8+4 \sqrt{3})=0$
109. What is the HM of the roots of the equation?
(a) 2
(1) 4
(c) $2 \sqrt{2}$
(d) $2 \sqrt{3}$
110. What is the GM of the roots of the
(a) $\sqrt{2}(\sqrt{6}-\sqrt{3}+\sqrt{2}-1)$
(b) $\sqrt{2}(\sqrt{6}+\sqrt{3}-\sqrt{2}-1)$
(c) $(\sqrt{6}-\sqrt{3}+\sqrt{2}-1)$
(d) $(\sqrt{6}+\sqrt{3}+\sqrt{2}-1)$

Consider the following for the next two (02) items that follow :

Let $\sin \beta$ be the GM of $\sin \alpha$ and $\cos \alpha ; \tan \gamma$ be the AM of $\sin \alpha$ and $\cos \alpha$.
111. What is $\cos 2 \beta$ equal to ?
(a) $(\cos \alpha-\sin \alpha)^{2}$
(b) $(\cos \alpha+\sin \alpha)^{2}$
(c) $(\cos \alpha-\sin \alpha)^{3}$
(d) $\frac{(\cos \alpha-\sin \alpha)^{2}}{2}$
112. What is the value of $\sec 2 \gamma$?
(a) $\frac{3-\sin 2 \alpha}{5+2 \sin 2 \alpha}$
(6) $\frac{5+\sin 2 \alpha}{3-\sin 2 \alpha}$
(c) $\frac{3-2 \sin 2 \alpha}{4+\sin 2 \alpha}$
(d) $\frac{3-\sin 2 \alpha}{4+3 \sin 2 \alpha}$

Consider the following for the next two (02) items that follow :

A flagstaff 20 m long standing on a pillar 10 m high subtends an angle $\tan ^{-1}(0.5)$ at a point P on the ground. Let θ be the angle subtended by the pillar at this point P.
113. If x is the distance of P from bottom of the pillar, then consider the following statements :

1. x can take two values which are in the ratio $1: 3$
2. x can be equal to height of the flagstaff

Which of the statements given above is/are correct?
a) 1 only
(b) 2 only
(c) Both 1 and 2
(d) Neither 1 nor 2
114. What is a possible value of $\tan \theta$?
(a) $\frac{3}{4}$
(b) $\frac{2}{3}$
(c) $\frac{1}{3}$
(d) $\frac{1}{4}$

Consider the following for the next two (02) items that follow :

The perimeter of a triangle $A B C$ is 6 times the AM of sine of angles of the triangle. Further $B C=\sqrt{3}$ and $C A=1$.
115. What is the perimeter of the triangle ?
(a) $\sqrt{3}+1$
(b) $\sqrt{3}+2$
(2) $\sqrt{3}+3$
(d) $2 \sqrt{3}+1$
116. Consider the following statements :

1. $A B C$ is right angled triangle
2. The angles of the triangle are in AP

Which of the statements given above is/are correct?
(a) 1 only
(b) 2 only
(c) Both 1 and 2
(d) Neither 1 nor 2

Consider the following for the next two (02) items that follow :

Let $x=\frac{\sin ^{2} A+\sin A+1}{\sin A}$ where $0<A \leqslant \frac{\pi}{2}$
117. What is the minimum value of x ?
(a) 1
(b) 2
(n)
(d) 4
118. At what value of A does x attain the minimum value?
(a) $\frac{\pi}{6}$
(b) $\frac{\pi}{4}$
(c) $\frac{\pi}{3}$
(\$) $\frac{\pi}{2}$

Consider the following for the next two (02) items that follow :

In the triangle $A B C$,

$$
a^{2}+b^{2}+c^{2}=a c+\sqrt{3} b c
$$

119. What is the nature of the triangle?
(a) Equilateral
(b) Isosceles
(a) Right angled triangle
(d) Scalene but not right angled
120. If $c=8$, what is the area of the triangle?
(a). $4 \sqrt{3}$
(b) $6 \sqrt{3}$
(4) $8 \sqrt{3}$
(d) $12 \sqrt{3}$
