1. Consider the following statements :

1.
$$f(x) = lnx$$
 is increasing in $(0, \infty)$

2. $g(x) = e^{x} + e^{\frac{1}{x}}$ is decreasing in (0, ∞)

Which of the statements given above is/are correct?

- (a) 1 only
 - (b) 2 only
 - (c) Both 1 and 2
 - (d) Neither 1 nor 2
- 2. What is the derivative of $\sin^2 x$ with respect to $\cos^2 x$?
 - 1 -1
 - (b) 1
 - (c) $\sin 2x$
 - (d) $\cos 2x$
- 3. For what value of m with m < 0, is the area bounded by the lines y = x, y = mx and x = 2 equal to 3 ?</p>
 - $(a) -\frac{1}{2}$
 - (b) -1
 - (c) $-\frac{3}{2}$
 - (d) -2
- 4. What is the derivative of $cosec(x^{\circ})$?
 - (a) $-\operatorname{cosec}(x^\circ) \operatorname{cot}(x^\circ)$

$$\sqrt{-\frac{\pi}{180}}\operatorname{cosec}(x^{\circ})\operatorname{cot}(x^{\circ})$$

(c)
$$\frac{\pi}{180} \operatorname{cosec}(x^\circ) \operatorname{cot}(x^\circ)$$

(d)
$$-\frac{\pi}{180}\operatorname{cosec}(x)\operatorname{cot}(x)$$

5. A solution of the differential equation

$$\left(\frac{dy}{dx}\right)^2 - x\frac{dy}{dx} = 0 \text{ is}$$

(a) $y = 2x$
(b) $y = 2x + 4$
(c) $y = x^2 - 1$
(d) $y = \frac{(x^2 - 2)}{2}$

6. If $f(x) = x^2 + 2$ and g(x) = 2x - 3, then what is (fg)(1) equal to?

- 7. What is the range of the function f(x) = x + |x| if the domain is the set of real numbers ?
 - (a) (0, ∞)
 - (▶) [0, ∞)
 - (c) (−∞,∞)
 - (d) [1, ∞)

- 8. If $f(x) = x(4x^2 3)$, then what is $f(\sin\theta)$ equal to ?
 - $-\sin 3\theta$
 - (b) $-\cos 3\theta$
 - (c) $\sin 3\theta$
 - (d) $-\sin 4\theta$

9. What is $\lim_{x \to 5} \frac{5-x}{|x-5|}$ equal to ?

- (a) -1
- (b) 0
- (c) 1
- Limit does not exist

10 What is
$$\lim_{x\to 1} \frac{x^9-1}{x^3-1}$$
 equal to ?

(a) -1

- (b) -3
- 3

(d) Limit does not exist

Consider the following for the next three (03) items that follow :

Let $f(x) = Pe^x + Qe^{2x} + Re^{3x}$, where P, Q, R are real numbers. Further f(0) = 6, $f'(\ln 3) = 282$ and $\int_0^{\ln 2} f(x) dx = 11$

(11) What is the value of Q?

(a) 1

25 2

- (d) 4
 12. What is the value of *R*?
 (a) 1
 - (b) 2

(c) 3

(d) 4

13. What is f'(0) equal to?

(a) 18
(b) 16
(c) 15
(i) 14

Consider the following for the next two (02) items that follow :

Suppose *E* is the differential equation representing family of curves $y^2 = 2cx + 2c\sqrt{c}$ where *c* is a positive parameter.

14. What is the order of the differential equation ?

5

- 15. What is the degree of the differential equation ?
 - (a) 2
 - 10) 3
 - (c) 4
 - (d) Degree does not exist

Let
$$f(x) = \begin{vmatrix} \cos x & x & 1 \\ 2\sin x & x^2 & 2x \\ \tan x & x & 1 \end{vmatrix}$$

- 16. What is f(0) equal to ?
 - (a) -1
 - A 0
 - (c) 1
 - (d) 2

17. What is $\lim_{x\to 0} \frac{f(x)}{x}$ equal to ?

- (a) -1
- 0 10
- (c) 1
- (d) 2

8.	Wha	at is	$\lim_{x\to 0}$	$\frac{f(x)}{x^2}$	equal	to ?	
7	(a)	-1					
	(b)	0					
	(c)	1					
	(d)	2					

Consider the following for the next two (02) items that follow :

Let $f(x) = \sin[\pi^2]x + \cos[-\pi^2]x$ where [.] is a greatest integer function

19. What is $f\left(\frac{\pi}{2}\right)$ equal to? (a) -1 (b) -1 (c) 1 (d) 2 20. What is $f\left(\frac{\pi}{4}\right)$ equal to? (a) $-\frac{1}{\sqrt{2}}$ (b) -1 (c) 1 (

Let $\Delta(a, b, c, \alpha) = \begin{vmatrix} a & b & a\alpha + b \\ b & c & b\alpha + c \\ a\alpha + b & b\alpha + c & 0 \end{vmatrix}$

21. If $\Delta(a, b, c, \alpha) = 0$ for every $\alpha > 0$, then which one of the following is correct?

- (a) a, b, c are in AP
- () a, b, c are in GP
 - (c) a, 2b, c are in AP
- (d) a, 2b, c are in GP
- 22. If $\Delta(7, 4, 2, \alpha) = 0$, then α is a root of which one of the following equations?
 - (a) $7x^2 + 4x + 2 = 0$
 - (b) $7x^2 4x + 2 = 0$

 $\sqrt{7x^2+8x+2}=0$

(d) $7x^2 - 8x + 2 = 0$

Consider the following for the next two (02) items that follow :

Given that $m(\theta) = \cot^2 \theta + n^2 \tan^2 \theta + 2n$, where *n* is a fixed positive real number.

- 23. What is the least value of $m(\theta)$?
 - (a) n
 - (b) 2n

- 24. Under what condition does *m* attain the least value ?
 - (a) $n = \tan^2 \theta$ (b) $n = \cot^2 \theta$ (c) $n = \sin^2 \theta$ (d) $n = \cos^2 \theta$

Consider the following for the next two (02) items that follow :

A quadrilateral is formed by the lines x = 0, y = 0, x + y = 1 and 6x + y = 3.

- 25. What is the equation of diagonal through origin?
 - (a) 3x + y = 0(b) 2x + 3y = 0(c) 3x - 2y = 0(d) 3x + 2y = 0
- 26. What is the equation of other diagonal?
 - (a) x + 2y 1 = 0(b) x - 2y - 1 = 0
 - (c) 2x + y + 1 = 0
 - (x) 2x + y 1 = 0

P(x, y) is any point on the ellipse $x^2 + 4y^2 = 1$. Let *E*, *F* be the foci of the ellipse.

27. What is PE + PF equal to ?

(a) 1
(b) 2
(c) 3

(d) 4

28. Consider the following points :

Which of the above points lie on latus rectum of ellipse?

- (a) 1 and 2 only
- (b) 2 and 3 only
- (c) 1 and 3 only
- (d) 1, 2 and 3

Consider the following for the next two (02) items that follow :

The line y = x partitions the circle

 $(x-a)^2 + y^2 = a^2$ in two segments.

29. What is the area of minor segment?

(b)
$$\frac{(\pi - 2)a^2}{4}$$

(c) $\frac{(\pi - 1)a^2}{4}$
(c) $\frac{(\pi - 2)a^2}{2}$
(d) $\frac{(\pi - 1)a^2}{2}$

30. What is the area of major segment?

(a)
$$\frac{(3\pi - 2)a^2}{4}$$

(b) $\frac{(3\pi + 2)a^2}{4}$
(c) $\frac{(3\pi - 2)a^2}{2}$
(d) $\frac{(3\pi + 2)a^2}{2}$

31 Consider the following frequency distribution :

x	1	2	3	5
f	4	6	9	7

What is the value of median of the distribution?

(a) 1
(b) 2
(c) 3
(d)
$$3\cdot 5$$

- 32. For data -1, 1, 4, 3, 8, 12, 17, 19, 9, 11; if M is the median of first 5 observations and N is the median of last five observations, then what is the value of 4M - N?
 - (a) 7
 - (b) 4
 - (c) 1

V 0

- 33. Let P, Q, R represent mean, median and mode. If for some distribution $5P = 4Q = \frac{R}{2}$, then what is $\frac{P+Q}{2P+07R}$ equal to?
 - (a) $\frac{1}{12}$ (b) $\frac{1}{7}$ (c) $\frac{2}{9}$ (d) $\frac{1}{4}$
- 34. If G is the geometric mean of numbers 1, 2, 2^2 , 2^3 , ..., 2^{n-1} , then what is the value of $1 + 2\log_2 G$?
 - (a) 1
 - (b) 4
 - (c) n-1

(d) n

35. If H is the harmonic mean of numbers 1, 2, 2^2 , 2^3 , ..., 2^{n-1} , then what is n/H equal to ?

(a) $2 - \frac{1}{2^{n+1}}$ (c) $2 - \frac{1}{2^{n-1}}$ (c) $2 + \frac{1}{2^{n-1}}$ (d) $2 - \frac{1}{2^n}$

36. Let P be the median, Q be the mean and R be the mode of observations $x_1, x_2, x_3, \ldots x_n$. Let $S = \sum_{i=1}^n (2x_i - a)^2$. S takes minimum value, when a is equal to

- (a) P(b) $\frac{Q}{2}$ (c) 2Q
- (d) R
- 37 One bag contains 3 white and 2 black balls, another bag contains 2 white and 3 black balls. Two balls are drawn from the first bag and put it into the second bag and then a ball is drawn from the second bag. What is the probability that it is white ?
 - (a) $\frac{6}{7}$ (b) $\frac{33}{70}$ Ans - 23/50 (c) $\frac{3}{10}$ (d) $\frac{1}{70}$

- 38. Three dice are thrown. What is the probability that each face shows only multiples of 3?
 - (a) $\frac{1}{9}$ (b) $\frac{1}{18}$ (c) $\frac{1}{27}$
 - (d) $\frac{1}{3}$
 - **39.** What is the probability that the month of December has 5 Sundays ?
 - (a) 1 (b) $\frac{1}{4}$ (c) $\frac{3}{7}$ (d) $\frac{2}{7}$
 - **40.** A natural number *n* is chosen from the first 50 natural numbers. What is the probability that $n + \frac{50}{n} < 50$?
 - (a) $\frac{23}{25}$ (b) $\frac{47}{50}$ (c) $\frac{24}{25}$ (d) $\frac{49}{50}$

- 41 How many real numbers satisfy the equation |x-4|+|x-7| = 15?
 - (a) Only one
 - Only two
 - (c) Only three
 - (d) Infinitely many
- 42. A mapping $f: A \to B$ defined as $f(x) = \frac{2x+3}{3x+5}, x \in A$. If f is to be onto, then what are A and B equal to ?
 - (a) $A = R \setminus \{-\frac{5}{3}\}$ and $B = R \setminus \{-\frac{2}{3}\}$
 - (b) A = R and $B = R \setminus \{-\frac{5}{3}\}$
 - (c) $A = R \setminus \{-\frac{3}{2}\}$ and $B = R \setminus \{0\}$
 - $A = R \setminus \{-\frac{5}{3}\} \text{ and } B = R \setminus \{\frac{2}{3}\}$
- 43. α and β are distinct real roots of the quadratic equation $x^2 + ax + b = 0$. Which of the following statements is/are sufficient to find α ?

1.
$$\alpha + \beta = 0$$
, $\alpha^2 + \beta^2 = 2$

2. $\alpha\beta^2 = -1, a = 0$

Select the correct answer using the code given below :

(a) 1 only

- (b) 2 only .
- (c) Both 1 and 2
- (d) Neither 1 nor 2

44. If the sixth term in the binomial expansion of $\left(\frac{8}{3}, \frac{8}{3}, \frac{8}{3}\right)^8$

pansion of $\left(x^{-\frac{8}{3}} + x^2 \log_{10} x\right)^8$ is 5600, then what is the value of x ?

- (a) 6
- (b) 8
- 1 9
- (d) 10
- 45. How many terms are there in the expansion of $(3x y)^4(x + 3y)^4$?
 - (a) 9
 - (b) 12
 - 15
 - (d) 17
- 46. p, q, r and s are in AP such that p+s=8 and qr=15. What is the difference between largest and smallest numbers ?
 - (a) 6
 - (b) 5
 - (c) 4
 - (d) 3
- **47.** Consider the following statements for a fixed natural number n:
 - 1. C(n, r) is greatest if n = 2r
 - 2. C(n, r) is greatest if n = 2r 1 and n = 2r + 1

Which of the statements given above is/are correct?

- (a) 1 only
- (b) 2 only
- Both 1 and 2
- (d) Neither 1 nor 2
- **48** *m* parallel lines cut *n* parallel lines giving rise to 60 parallelograms. What is the value of (m + n)?
 - (a) 6
 - (b) 7
 - (c) 8
 - 1 9
- 49 Let x be the number of permutations of the word 'PERMUTATIONS' and y be the number of permutations of the word 'COMBINATIONS'. Which one of the following is correct ?
 - (a) x = y
 - (b) y = 2x
 - (x) = 4y
 - (d) y = 4x
- 50. 5-digit numbers are formed using the digits 0, 1, 2, 4, 5 without repetition. What is the percentage of numbers which are greater than 50,000?

(a) 20%
(b) 25%
(c)
$$\frac{100}{3}$$
%
(d) $\frac{110}{3}$ %

- 51. If $2-i\sqrt{3}$ where $i = \sqrt{-1}$ is a root of the equation $x^2 + ax + b = 0$, then what is the value of (a + b)?
 - (a) -11
 - (b) -3
 - (c) 0
 - W/ 3
- 52. If $z = \frac{1+i\sqrt{3}}{1-i\sqrt{3}}$ where $i = \sqrt{-1}$, then what is the argument of z?

- $\frac{23}{3}$
- (c) $\frac{4\pi}{3}$

(d)
$$\frac{5\pi}{6}$$

53. If a, b, c are in AP, then what is

 $\begin{vmatrix} x+1 & x+2 & x+3 \\ x+2 & x+3 & x+4 \\ x+a & x+b & x+3 \end{vmatrix}$ equal to ? (a) -1 (b) 0 (c) 1 (d) 2

- 54. If $log_x a$, a^x and $log_b x$ are in GP, then what is x equal to?
 - (a) $log_a(log_b a)$
 - (b) $log_b(log_ab)$

(d)
$$\frac{\log_a(\log_b a)}{2}$$

55. If $2^{\frac{1}{c}}$, $2^{\frac{b}{ac}}$, $2^{\frac{1}{a}}$ are in GP, then which one of the following is correct?

- (a) a, b, c are in AP
- (b) a, b, c are in GP
- (c) a, b, c are in HP
- (d) ab, bc, ca are in AP
- 56. The first and the second terms of an AP are $\frac{5}{2}$ and $\frac{23}{12}$ respectively. If n^{th} term is the largest negative term, what is the value of n?
 - (a) 5
 - 10 6
 - (c) 7
 - (d) n cannot be determined

57. For how many integral values of k, the equation $x^2 - 4x + k = 0$, where k is an integer has real roots and both of them lie in the interval (0, 5) ?

- (a) 3 (b) 4 (c) 5
- (d) 6

19

- 58. In an AP, the first term is x and the sum of the first n terms is zero. What is the sum of next m terms?
 - (a) $\frac{mx(m+n)}{n-1}$
 - (b) $\frac{mx(m+n)}{1-n}$

(c)
$$\frac{nx(m+n)}{m-1}$$

(d)
$$\frac{nx(m+n)}{1-m}$$

59. Consider the following statements :

- 1. (25)! + 1 is divisible by 26
- 2. (6)! + 1 is divisible by 7

Which of the above statements is/are correct?

- (a) 1 only
- 2 only
- (c) Both 1 and 2
- (d) Neither 1 nor 2

60. If z is a complex number such that z-1

 $\frac{z-1}{z+1}$ is purely imaginary, then what is |z| equal to ?

(a) $\frac{1}{2}$ (b) $\frac{2}{3}$ (c) 1 (d) 2

- 61. If ω is a non-real cube root of 1, then
 - what is the value of $\left|\frac{1-\omega}{\omega+\omega^2}\right|$?
 - (a) $\sqrt{3}$ (b) $\sqrt{2}$ (c) 1 (d) $\frac{4}{\sqrt{3}}$
- 62. What is the number of 6-digit numbers that can be formed only by using 0, 1, 2, 3, 4 and 5 (each once); and divisible by 6?
 - (a) 96
 - (b) 120
 - (c) 192
 - (1) 312
- 63. What is the binary number equivalent to decimal number 1011?
 - (a) 1011

(b) 111011

- Ans 1111110011
- (c) 11111001
- (d) 111110011
- 64. Let A be a matrix of order 3×3 and |A| = 4. If $|2 \operatorname{adj}(3A)| = 2^{\alpha}3^{\beta}$, then what is the value of $(\alpha + \beta)$?
 - (a) 12
 - 13
 - (c) 17
 - (d) 24

- 65. If α and β are the distinct roots of equation $x^2 x + 1 = 0$, then what is the
 - value of $\left| \frac{\alpha^{100} + \beta^{100}}{\alpha^{100} \beta^{100}} \right|$?
 - (a) $\sqrt{3}$
 - (b) √2
 - (c) 1

 $\frac{1}{\sqrt{3}}$

- 66. Let A and B be symmetric matrices of same order, then which one of the following is correct regarding (AB - BA)?
 - 1. Its diagonal entries are equal but nonzero
 - 2. The sum of its non-diagonal entries is zero

Select the correct answer using the code given below :

- (a) 1 only
- (b) 2 only
- (c) Both 1 and 2
- (d) Neither 1 nor 2
- 67. Consider the following statements in respect of square matrices A, B, C each of same order n:
 - 1. $AB = AC \implies B = C$ if A is nonsingular
 - 2. If BX = CX for every column matrix X having n rows then B = C

Which of the statements given above is/are correct?

1 only

2 only

- (c) Both 1 and 2
- (d) Neither 1 nor 2
- 68. The system of linear equations x+2y+z=4, 2x+4y+2z=8 and 3x+6y+3z=10 has
 - (a) a unique solution
 - (b) infinite many solutions
 - (c) no solution
 - (d) exactly three solutions
- 69. Let AX = B be a system of 3 linear equations with 3-unknowns. Let X_1 and X_2 be its two distinct solutions. If the combination $aX_1 + bX_2$ is a solution of AX = B; where a, b are real numbers, then which one of the following is correct?

(a)
$$a = b$$

(b) $a + b = 1$
(c) $a + b = 0$
(d) $a - b = 1$

70. What is the sum of the roots of the

equation $\begin{vmatrix} 0 & x-a & x-b \\ 0 & 0 & x-c \\ x+b & x+c & 1 \end{vmatrix} = 0?$

- (a) a + b + c
- (a b + c)
 - (c) a + b c
 - (d) a b c

Consider the following for the next two (102) items that follow :

Let A(1, -1, 2) and B(2, 1, -1) be the end points of the diameter of the sphere $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz - 1 = 0.$

71. What is u + v + w equal to?

- (b) -1
- (c) 1
- (d) 2
- 72. If P(x, y, z) is any point on the sphere, then what is $PA^2 + PB^2$ equal to ?

Consider the following for the next two (02) items that follow :

Consider two lines whose direction ratios are (2, -1, 2) and (k, 3, 5). They are inclined at an angle $\frac{\pi}{4}$.

73. What is the value of k?

74. What are the direction ratios of a line which is perpendicular to both the lines?

(a) (1, 2, 10)(b) (-1, -2, 10)(c) (11, 12, -10)(11, 2, -10)

Consider the following for the next two (02) items that follow :

Let $\vec{a} = 3\hat{i} + 3\hat{j} + 3\hat{k}$ and $\vec{c} = \hat{j} - \hat{k}$. Let \vec{b} be such that $\vec{a} \cdot \vec{b} = 27$ and $\vec{a} \times \vec{b} = \vec{9c}$

75. What is \vec{b} equal to ? (a) $3\hat{i}+4\hat{j}+2\hat{k}$ (b) $5\hat{i}+2\hat{j}+2\hat{k}$ (c) $5\hat{i}-2\hat{j}+6\hat{k}$ (d) $3\hat{i}+3\hat{j}+4\hat{k}$

25

76. What is the angle between $(\vec{a} + \vec{b})$ and \vec{c} ?

- (b) $\frac{\pi}{2}$
- (c) $\frac{\pi}{4}$ (d) $\frac{\pi}{6}$

Consider the following for the next two (02) items that follow :

Let a vector $\vec{a} = 4\hat{i} - 8\hat{j} + \hat{k}$ make angles α , β , γ with the positive directions of x, y, z axes respectively.

,77. What is $\cos\alpha$ equal to?

578. What is $\cos 2\beta + \cos 2\gamma$ equal to?

(d)
$$\frac{16}{81}$$

Consider the following for the next two (02) items that follow :

The position vectors of two points A and B are $\hat{i} - \hat{j}$ and $\hat{j} + \hat{k}$ respectively.

79. Consider the following points :

1. (-1, -3, 1) 2. (-1, 3, 2) 3. (-2, 5, 3)

Which of the above points lie on the line joining A and B?

- (a) 1 and 2 only
- 2 and 3 only
- (c) 1 and 3 only
- (d) 1, 2 and 3

80. What is the magnitude of \overrightarrow{AB} ?

(a) 2 (b) 3 (c) $\sqrt{6}$ (d) $\sqrt{3}$

27

- **81.** The mean and variance of five observations are 14 and 13.2 respectively. Three of the five observations are 11, 16 and 20. What are the other two observations?
 - (a) 8 and 15
 - (b) 9 and 14
 - (e) 10 and 13
 - (d) 11 and 12
 - **82.** Let A and B be two independent events such that $P(\overline{A}) = 0.7, P(\overline{B}) = k, P(A \cup B) = 0.8.$

What is the value of k?

- (a) $\frac{5}{7}$
- (b) $\frac{4}{7}$
- (c) $\frac{2}{7}$

(d)
$$\frac{1}{7}$$

- 83. A biased coin with the probability of getting head equal to $\frac{1}{4}$ is tossed five times. What is the probability of getting tail in all the first four tosses followed by head?
 - (a) $\frac{81}{512}$

(c)
$$\frac{81}{256}$$

(d) $\frac{27}{1024}$

84. A coin is biased so that heads comes up thrice as likely as tails. In four independent tosses of the coin, what is probability of getting exactly three heads?

(a)
$$\frac{81}{256}$$

(b) $\frac{27}{64}$
(c) $\frac{27}{256}$
(d) $\frac{9}{256}$

- 85. Let X and Y be two random variables such that X + Y = 100. If X follows Binomial distribution with parameters n = 100 and $p = \frac{4}{5}$, what is the variance of Y?
 - (a) 1 (b) $\frac{1}{2}$ (c) 16 (d) $\frac{1}{16}$

- 86. If two lines of regression are x+4y+1=0 and 4x+9y+7=0, then what is the value of x when y=-3?
 - (a) -13 (b) -5
 - (d) 7

87. The central angles p, q, r and s(in degrees) of four sectors in a Pie Chart satisfy the relation 9p = 3q =2r = 6s. What is the value of 4p - q?

- (a) 12
- (b) 24
- (c) 30
- (a) 36
- 88. The observations 4, 1, 4, 3, 6, 2, 1, 3, 4, 5, 1, 6 are outputs of 12 dices thrown simultaneously. If m and M are means of lowest 8 observations and highest 4 observations respectively, then what is (2m + M) equal to?
 - 10
 - (b) 12
 - (c) 17
 - (d) 21

89. A bivariate data set contains only two points (-1, 1) and (3, 2). What will be the line of regression of y on x?

(b)
$$3x + 2y - 1 = 0$$

- (c) x + 4y + 1 = 0
- (d) 5x 4y + 1 = 0
- **90.** A die is thrown 10 times and obtained the following outputs :
 - 1, 2, 1, 1, 2, 1, 4, 6, 5, 4

What will be the mode of data so obtained?

(a) 6
(b) 4
(c) 2
(c) 1

Consider the following for the next three (03) items that follow :

- Let $I_1 = \int_0^{\pi} \frac{x}{1 + \cos^2 x} dx$ and $I_2 = \int_0^{\pi} \frac{1}{1 + \sin^2 x} dx$
 - 91. What is the value of $\frac{I_1 + I_2}{I_1 I_2}$?
 - (a) 1
 - (b) π
 - (c) π^2
 - $\sqrt{\pi} \frac{\pi+1}{\pi-1}$

92. What is the value of $8I_1^2$?

(a)
$$\pi$$

(b) π^2
(c) π^3
(c) π^4

93. What is the value of I_2 ?

(a)
$$\frac{\pi}{\sqrt{2}}$$

$$(\sqrt{2})$$
 $\frac{\pi}{2\sqrt{2}}$

(c)
$$\frac{3\pi}{2\sqrt{2}}$$

(d)
$$\frac{\pi}{4\sqrt{2}}$$

Consider the following for the next two (02) items that follow :

Let
$$l = \int_{a}^{b} \frac{|x|}{x} dx$$
, $a < b$
94. What is *l* equal to when $a < 0 < b$?
(b) $a + b$
(b) $a - b$
(c) $b - a$
(d) $\frac{(a+b)}{2}$
33

-95. What is *l* equal to when a < b < 0?

(a)
$$a+b$$

(b) $a-b$
(c) $b-a$
(d) $\frac{(a+b)}{2}$

Consider the following for the next three (03)' items that follow :

Let $f(x) = |lnx|, x \neq 1$

C96. What is the derivative of f(x) at x = 0.5?

97. What is the derivative of f(x) at x = 2?

(a) $-\frac{1}{2}$ (b) -1(c) $\frac{1}{2}$ (d) 2 **B** - 4

98. What is the derivative of $f \circ f(x)$, where 1 < x < 2?

(a)
$$\frac{1}{lnx}$$

$$(\sqrt{\frac{1}{x \ln x}})$$

(c)
$$-\frac{1}{\ln x}$$

(d)
$$-\frac{1}{x \ln x}$$

Let
$$f(x) = \begin{cases} x+6, \ x \le 1 \\ px+q, \ 1 < x < 2 \\ 5x, \ x \ge 2 \end{cases}$$

and f(x) is continuous

99. What is the value of p?

(a) 2

1 3

- (c) 4
- (d) 5

100. What is the value of q?

(a) 2
(b) 3
(c) 4
(d) 5

Consider the following for the next two (02) items that follow :

Consider the function

$$f(x) = |x-2| + |3-x| + |4-x|$$
, where $x \in R$.

-101. At what value of x does the function attain minimum value?

(a) 2
(b) 3
(c) 4
(d) 0

102. What is the minimum value of the function?

45	2
(b)	3
(c)	4
(d)	0

Consider the following for the next two (02) items that follow :

Consider the sum $S = 0! + 1! + 2! + 3! + 4! + \dots + 100!$

103. If the sum S is divided by 8, what is the remainder?

- (a) 0
- (b) 1

V(c) 2

(d) Cannot be determined

- 104. If the sum S is divided by 60, what is the remainder?
 - (a) 1
 - (b) 3
 - (c) 17
 - (7) 34

In a triangle PQR, P is the largest angle and $\cos P = \frac{1}{3}$. Further the in-circle of the triangle touches the sides PQ, QR and RPat N, L and M respectively such that the lengths PN, QL and RM are n, n+2, n+4respectively where n is an integer.

105. What is the value of n?

- (a) 4
- (b) 6
- 6 8
- (d) 10
- **106.** What is the length of the smallest side ?
 - (a) 12(b) 14
 - (c) 16

(1) 18

Consider the following for the next two (02) items that follow :

Given that

 $\sin x + \cos x + \tan x + \cot x + \sec x + \csc x = 7$

107. The given equation can be reduced to

- (b) $\sin^2 2x 44 \sin 2x + 36 = 0$ (c) $\sin^2 2x + 44 \sin 2x - 36 = 0$ (c) $\sin^2 2x - 22 \sin 2x + 18 = 0$
- (d) $\sin^2 2x + 22\sin 2x 18 = 0$
- 108. If $\sin 2x = a b\sqrt{c}$, where a and b are natural numbers and c is prime number, then what is the value of a - b + 2c?
 - (a) 0
 - (b) 14
 - (c) 21
 - V(d) 28

Consider the following for the next two (02) items that follow :

A quadratic equation is given by

$$(3+2\sqrt{2})x^2 - (4+2\sqrt{3})x + (8+4\sqrt{3}) = 0$$

109. What is the HM of the roots of the equation ?

(a) 2 (b) 4 (c) $2\sqrt{2}$ (d) $2\sqrt{3}$

- 110. What is the GM of the roots of the equation ?
 - (a) $\sqrt{2}(\sqrt{6} \sqrt{3} + \sqrt{2} 1)$ (b) $\sqrt{2}(\sqrt{6} + \sqrt{3} - \sqrt{2} - 1)$ (c) $(\sqrt{6} - \sqrt{3} + \sqrt{2} - 1)$ (d) $(\sqrt{6} + \sqrt{3} + \sqrt{2} - 1)$

Let $\sin\beta$ be the GM of $\sin\alpha$ and $\cos\alpha$; $\tan\gamma$ be the AM of $\sin\alpha$ and $\cos\alpha$.

111. What is $\cos 2\beta$ equal to?

112. What is the value of $\sec 2\gamma$?

(a)
$$\frac{3 - \sin 2\alpha}{5 + 2\sin 2\alpha}$$

(b)
$$\frac{5 + \sin 2\alpha}{3 - \sin 2\alpha}$$

(c)
$$\frac{3 - 2\sin 2\alpha}{4 + \sin 2\alpha}$$

(d)
$$\frac{3 - \sin 2\alpha}{4 + 3\sin 2\alpha}$$

Consider the following for the next two (02) items that follow :

A flagstaff 20 m long standing on a pillar 10 m high subtends an angle $\tan^{-1}(0.5)$ at a point *P* on the ground. Let θ be the angle subtended by the pillar at this point *P*.

- **113.** If x is the distance of P from bottom of the pillar, then consider the following statements :
 - 1. x can take two values which are in the ratio 1:3
 - 2. x can be equal to height of the flagstaff

Which of the statements given above is/are correct?

- (a) 1 only
 - (b) 2 only
 - (c) Both 1 and 2
 - (d) Neither 1 nor 2

114. What is a possible value of $\tan \theta$?

B - ASGT-B-GNL

39

The perimeter of a triangle *ABC* is 6 times the AM of sine of angles of the triangle. Further $BC = \sqrt{3}$ and CA = 1.

115. What is the perimeter of the triangle?

- (a) $\sqrt{3} + 1$
- (b) $\sqrt{3}+2$
- $\sqrt{3} + 3$
 - (d) $2\sqrt{3}+1$

116. Consider the following statements :

- 1. ABC is right angled triangle
- 2. The angles of the triangle are in AP

Which of the statements given above is/are correct?

- (a) 1 only
- (b) 2 only

() Both 1 and 2

(d) Neither 1 nor 2

Consider the following for the next two (02) items that follow :

Let $x = \frac{\sin^2 A + \sin A + 1}{\sin A}$ where $0 < A \le \frac{\pi}{2}$

- 117. What is the minimum value of x?
 - (a) 1
 - (b) 2

(d) 4

118. At what value of *A* does *x* attain the minimum value?

Consider the following for the next two (02) items that follow :

In the triangle ABC,

$$a^2+b^2+c^2=ac+\sqrt{3}bc$$

- 119. What is the nature of the triangle?
 - (a) Equilateral
 - (b) Isosceles
 - V) Right angled triangle
 - (d) Scalene but not right angled
- **120.** If c = 8, what is the area of the triangle?
 - (a) $4\sqrt{3}$
 - (b) 6√3

£07 8√3

(d) 12√3

B - ASGT-B-GNL

41