1. Let A and B be matrices of order 3×3 .

is the value of |2B(adj(3A))|?

(a) 27

- (c) $\frac{27}{2}$
- (d) 1
- 2. If z is any complex number and $iz^3 + z^2 z + i = 0$, where $i = \sqrt{-1}$, then what is the value of $(|z|+1)^2$?

- (b) 4
- (c) 81
- (d) 121

- (a) 44440
- (b) 46460
- (c) 46440
- (d) 64440

4. If x, y and z are the cube roots of unity, then what is the value of xy + yz + zx 3

(a) 0

- (b) 1
- (c) 2

5. A man has 7 relatives (4 women and 3 men). His wife also has 7 relatives (3 women and 4 men). In how many ways can they invite (3) women and (3) men so that (3 of them are man's relatives and 3 of them are his wife's relatives?

- (b) 484
- (c) 485

- A triangle *PQR* is such that 3 points lie on the side *PQ*, 4 points on *QR* and 5 points on *RP* respectively. Triangles are constructed using these points as vertices. What is the number of triangles so formed?
 - (a) 205
 - (b) 206
 - (c) 215
 - (d) 220

7. If $log_b a = p$, $log_d c = 2p$ and $log_f e = 3p$, then what is $(ace)^{\frac{1}{p}}$ equal to ?

(c)
$$b^3d^2f$$

(d)
$$b^2d^2f^2$$

8. If $-\sqrt{2}$ and $\sqrt{3}$ are roots of the equation $a_0 + a_1x + a_2x^2 + a_3x^3 + x^4 = 0$ where a_0 , a_1 , a_2 , a_3 are integers, then which one of the following is correct?

(a)
$$a_2 = a_3 = 0$$

(b)
$$a_2 = 0$$
 and $a_3 = -5$

(c)
$$a_0 = 6$$
, $a_3 = 0$

(d)
$$a_1 = 0$$
 and $a_2 = 5$

9. Let z_1 and z_2 be two complex numbers such that $\left| \frac{z_1 + z_2}{z_1 - z_2} \right| = 1$, then what is

$$Re\left(\frac{z_1}{z_2}\right) + 1$$
 equal to?

- (a) -1
- (b) 0
- (c) 1
- (d) 5

10. If $26! = n8^k$, where k and n are positive integers, then what is the maximum value of k?

(d) 9

11. Consider the following statements in respect of two non-singular matrices A and B of the same order n:

5 B Crack

1.
$$adj(AB) = (adjA)(adjB)$$

$$2. adj(AB) = adj(BA)$$

How many of the above statements are correct?

- (a) None
- (b) Only one statement
- (c) Only two statements
- (d) All three statements

- 12. Consider the following statements in respect of a non-singular matrix Λ of order n:
 - 1. $A(adjA^T) = A(adjA)^T$
 - 2. If $A^2 = A$, then A is identity matrix of order n
 - 3. If $A^3 = A$, then A is identity matrix of order n

Which of the statements given above are correct?

- (b) 2 and 3 only
- (c) 1 and 3 only
- (d) 1, 2 and 3
- 13. How many four-digit natural numbers are there such that all of the digits are even?
 - (a) 625
 - (b) 500
 - (c) 400
 - (d) 256
- 14. If $\omega \neq 1$ is a cube root of unity, then what are the solutions of $(z-100)^3 + 1000 = 0$?
 - (a) $10(1-\omega)$, $10(10-\omega^2)$, 100
 - (b) $10(10-\omega)$, $10(10-\omega^2)$, 90

- (c) $10(1-\omega)$, $10(10-\omega^2)$, 1000
- (d) $(1 + \omega)$, $(10 + \omega^2)$, -1

15. What is $(1+i)^4 + (1-i)^4$ equal to, where $i = \sqrt{-1}$?

- (a) 4 (1) A(1)
- (c) -4

ਤੇ *ਜਿ*ਲ ਤੰ

- (d) -8
- 16. Consider the following statements in respect of a skew-symmetric matrix A of order 3:
 - 1. All diagonal elements are zero.
 - 2. The sum of all the diagonal elements of the matrix is zero.
 - 3. A is orthogonal matrix.

Which of the statements given above are correct?

- (a) 1 and 2 only
- (b) 2 and 3 only
- (c) 1 and 3 only
- (d) 1, 2 and 3

- 17. Four digit numbers are formed by using the digits 1, 2, 3, 5 without repetition of digits. How many of them are divisible by 4?
 - (a) 120
 - (b) 24
 - (c) 12
 - (d) 6
- 18. What is the remainder when 2¹²⁰ is divided by 7?
 - (a) 1
 - (b) 3
 - (c) 5
 - (d) 6
- 19. For what value of n is the determinant

$$\begin{vmatrix} C(9,4) & C(9,3) & C(10,n-2) \\ C(11,6) & C(11,5) & C(12,n) \\ C(m,7) & C(m,6) & C(m+1,n+1) \end{vmatrix} = 0$$

for every m > n?

(a) 4

(d) 7

m 26 m-1=

20. If ABC is a triangle, then what is the value of the determinant

- (a) -1
- (b) 0
- (c) 1
- (d) 3

21. What is the number of different matrices, each having 4 entries that can be formed using 1, 2, 3, 4 (repetition is allowed)?

(a) 72

(b) 216

(c) 254

(d) 768

22. Let $A = \{x \in R: (-1 < x < 1)\}$. Which of the following is/are bijective functions

- 1. f(x) = x|x|
- $2. g(x) = \cos(\pi x)$

from A to itself? \equiv

W W CO

Select the correct answer using the code given below:

- (a) 1 only 1 = 111
 - (b) 2 only
 - (c) Both 1 and 2
- (d) Neither 1 nor 2

23. Let R be a relation on the open interval (-1, 1) and is given by

- (a) R is reflexive but neither symmetric nor transitive
- (b) R is reflexive and symmetric but not transitive
- (c) R is reflexive and transitive but not symmetric

(d) R is an equivalence relation

24. For any three non-empty sets A, B, C,

 $(A \cup B) - \{(A-B) \cup (B-A) \cup (A \cap B)\}$

(d)
$$(A \cup B) - (A \cap B)$$

25. If a, b, c are the sides of triangle ABC, then what is

$$\begin{vmatrix} a^2 & b \sin A & c \sin A \\ b \sin A & 1 & \cos A \\ c \sin A & \cos A & 1 \end{vmatrix}$$
 equal to?

- (a) Zero
- (b) Area of triangle
- (c) Perimeter of triangle

$$-(d)$$
 $a^2+b^2+c^2$

1. a, c and e are in GP

2. $\frac{1}{a}$, $\frac{1}{c}$, $\frac{1}{a}$ are in GP

Select the correct answer using the code given below:

(a) 1 only

(b) 2 only Y

(c) Both 1 and 2

(d) Neither 1 nor 2

27. What is the number of solutions of $log_4(x-1) = log_2(x-3)$?

5 BCXC(a) Zero

Jog (2-1) - tog (2-

(d) Three

28. For $x \ge y > 1$,

let $log_x\left(\frac{x}{y}\right) + log_y\left(\frac{y}{x}\right) = k$, $\frac{(x-1)(x-1)}{x-1-1-1}$

then the value of k can never be equal

(d) 1

A - RRAN-B-MTH

29. If
$$A = \begin{bmatrix} \sin 2\theta & 2\sin^2 \theta - 1 & 0 \\ \cos 2\theta & 2\sin \theta \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, then

which of the following statements is/are correct?

$$1. A^{-1} = adjA$$

3.
$$A^{-1} = A^T$$

Select the correct answer using the code given below:

- (a) 1 only
- (b) 1 and 2

- (d) 2 and 3
- 30. What is the coefficient of x^{10} in the expansion of $\left(1-x^2\right)^{20} \left(2-x^2-\frac{1}{x^2}\right)^{-5}$?

(a)
$$-1$$

- (b) 1
- (c) 10
- (d) Coefficient of x^{10} does not exist

- 31. If the 4th term in the expansion of $\left(mx + \frac{1}{x}\right)^n \text{ is } \frac{5}{2}, \text{ then what is the value of } mn?$
 - (a) -3
 - (b) 3
 - (c) 6
 - (d) 12
- 32. If a, b and c (a > 0, c > 0) are in GP, then consider the following in respect of the equation $ax^2 + bx + c = 0$:
 - 1. The equation has imaginary roots.

5 B Crac

- 2. The ratio of the roots of the equation is $1:\omega$ where ω is a cube root of unity.
- 3. The product of roots of the equation is $\left(\frac{b^2}{a^2}\right)$.

Which of the statements given above are correct?

- (a) 1 and 2 only
- (b) 2 and 3 only
- (c) 1 and 3 only
- (d) 1, 2 and 3

- 33. If $x^2 + mx + n$ is an integer for all integral values of x, then which of the following is/are correct?
 - 1. m must be an integer
 - 2. n must be an integer

Select the correct answer using the code given below:

- (a) 1 only
- (b) 2 only
- (c) Both 1 and 2
- (d) Neither 1 nor 2
- 34. In a binomial expansion of $(x+y)^{2n+1}(x-y)^{2n+1}$, the sum of middle terms is zero. What

is the value of $\left(\frac{x^2}{y^2}\right)$

- (a) 1
- (b) 2
- (c) 4
- (d) 8
- 35. Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{6, 7\}$. What is the number of onto functions from A to B?

(b) 20

- 36. What is $\frac{\sqrt{3}\cos 10^{\circ} \sin 10^{\circ}}{\sin 25^{\circ}\cos 25^{\circ}}$ equal to ?
 - (a) 1
 - (b) $\sqrt{3}$
 - (c) 2
 - (d) 4

- (a) $-\frac{\sqrt{5-\sqrt{5}}}{2}$
- (b) $-\frac{\sqrt{5-\sqrt{3}}}{2}$

(d) $\frac{\sqrt{5-\sqrt{5}}}{4}$

38. If in a triangle ABC, $\sin^3 A + \sin^3 B + \sin^3 C = 3\sin A \sin B \sin C$, then what is

the value of the determinant $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$;

where a, b, c are sides of the triangle?

- (a) a + b + c
- (b) ab + bc + ca
- (c) (a+b)(b+c)(c+a)
- (d) 0

15

- 45. Under which one of the following conditions does the equation $(\cos \beta 1)x^2 + (\cos \beta)x + \sin \beta = 0$ in x have a real root for $\beta \in [0, \pi]$?
 - (a) $1 \cos \beta < 0$
 - (b) $1 \cos \beta \leq 0$
 - (c) $1-\cos\beta > 0$
 - (d) $1 \cos \beta \ge 0$
- 46. In a triangle ABC, AB = 16 cm, BC = 63 cm and AC = 65 cm. What is the value of $\cos 2A + \cos 2B + \cos 2C$?
 - (a) -1
 - (b) 0
 - (c) 1
 - (d) $\frac{76}{65}$
- 47. If $f(\theta) = \frac{1}{1 + \tan \theta}$ and $\alpha + \beta = \frac{5\pi}{4}$,

then what is the value of $f(\alpha)$ $f(\beta)$?

- (a) $-\frac{1}{2}$
- (b) $\frac{1}{2}$
- 14(e) 1
- (d) 2 $= \frac{1}{1+1} \left(-\frac{511}{5} \right)$

- 48. If $\tan \alpha$ and $\tan \beta$ are the roots of the equation $x^2 6x + 8 = 0$, then what is the value of $\cos(2\alpha + 2\beta)$?
 - (a) $\frac{13}{75}$
 - (b) $\frac{13}{85}$
 - (c) $\frac{17}{85}$
 - (d) $\frac{19}{85}$

- 49. What is the value of $\tan 65^{\circ} + 2\tan 45^{\circ} 2\tan 40^{\circ} \tan 25^{\circ}$?
 - (a) 0
 - (b) 1
 - (c) 2 C
 - (d) 4

- COS = OP
- Sin Thy
- 150. Consider the following statements:
 - 1. In a triangle ABC, if $\cot A \cdot \cot B \cdot \cot C > 0$, then the triangle is an acute angled triangle.
 - 2. In a triangle ABC, if $\tan A \cdot \tan B \cdot \tan C > 0$, then the triangle is an obtuse angled triangle.

Which of the statements given above is/are correct?

- (a) 1 only
- (b) 2 only
- (c) Both 1 and 2
- (d) Neither 1 nor 2

- 51. If (a, b) is the centre and c is the radius of the circle $x^2 + y^2 + 2x + 6y + 1 = 0$, then what is the value of $a^2 + b^2 + c^2$?
 - (a) 19
 - (b) 18
 - (c) 17
 - (d) 11
- 52. If (1, -1, 2) and (2, 1, -1) are the end points of a diameter of a sphere $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz 1 = 0$, then what is u + v + w equal to?
 - (a) -2
 - (b) -1
 - (c) 1
 - (d) 2
- 53. The number of points represented by the equation x = 5 on the xy-plane is
 - (a) Zero
 - (b) One
 - (c) Two
 - (d) Infinitely many

- 54. If < l, m, n > are the direction cosines of a normal to the plane 2x 3y + 6z + 4 = 0, then what is the value of $49(7l^2 + m^2 n^2)$?
 - (a) 0
 - (b) 1
 - (c) 3
 - (d) 71
- 55. A line through (1, -1, 2) with direction ratios < 3, 2, 2 > meets the plane x + 2y + 3z = 18. What is the point of intersection of line and plane?

55BCrac

- (a) (4, 4, 1)
- (b) (2, 4, 1)
- (c) (4, 1, 4)
- (d) (3, 4, 7)
- 56. If p is the perpendicular distance from origin to the plane passing through (1, 0, 0), (0, 1, 0) and (0, 0, 1), then what is $3p^2$ equal to?
 - (a) 4
 - (b) 3
 - (c) 2
 - (d) 1

57. If the direction cosines < l, m, n > of a line are connected by relation l + 2m + n = 0, 2l - 2m + 3n = 0, then what is the value of $l^2 + m^2 - n^2$?

(a)
$$\frac{1}{101}$$

(b)
$$\frac{29}{101}$$

(c)
$$\frac{41}{101}$$

(d)
$$\frac{92}{101}$$

58. If a variable line passes through the point of intersection of the lines x + 2y - 1 = 0 and 2x - y - 1 = 0 and meets the coordinate axes in A and B, then what is the locus of the mid-point of AB?

$$(a) 3x + y = 10xy$$

(b)
$$x + 3y = 10xy$$

(c)
$$3x + y = 10$$

(d)
$$x + 3y = 10$$

59. What is the equation to the straight line passing through the point $(-\sin\theta, \cos\theta)$ and perpendicular to the line $x\cos\theta + y\sin\theta = 9$?

(a)
$$x\sin\theta - y\cos\theta - 1 = 0$$

(b)
$$x\sin\theta - y\cos\theta + 1 = 0$$

(c)
$$x\sin\theta - y\cos\theta = 0$$

(d)
$$x\cos\theta - y\sin\theta + 1 = 0$$

60. Two points P and Q lie on line y = 2x + 3. These two points P and Q are at a distance 2 units from another point R(1, 5). What are the coordinates of the points P and Q?

(a)
$$\left(1+\frac{2}{\sqrt{5}}, 5+\frac{4}{\sqrt{5}}\right), \left(1-\frac{2}{\sqrt{5}}, 5-\frac{4}{\sqrt{5}}\right)$$

(b)
$$\left(3+\frac{2}{\sqrt{5}}, 5+\frac{4}{\sqrt{5}}\right), \left(-1-\frac{2}{\sqrt{5}}, 5-\frac{4}{\sqrt{5}}\right)$$

(c)
$$\left(1-\frac{2}{\sqrt{5}}, 5+\frac{4}{\sqrt{5}}\right), \left(1+\frac{2}{\sqrt{5}}, 5-\frac{4}{\sqrt{5}}\right)$$

(d)
$$\left(3 - \frac{2}{\sqrt{5}}, 5 + \frac{4}{\sqrt{5}}\right), \left(-1 + \frac{2}{\sqrt{5}}, 5 - \frac{4}{\sqrt{5}}\right)$$

- 61. If two sides of a square lie on the lines 2x + y 3 = 0 and 4x + 2y + 5 = 0, then what is the area of the square in square units?
 - (a) 6.05
 - (b) 6·15
 - (c) 6·25
 - (d) 6·35

- 62. ABC is a triangle with A(3, 5). The mid-points of sides AB, AC are at (-1, 2), (6, 4) respectively. What are the coordinates of centroid of the triangle ABC?
 - (a) $\left(\frac{8}{3}, \frac{11}{3}\right)$
 - (b) $\left(\frac{7}{3}, \frac{7}{3}\right)$
 - (c) $\left(2, \frac{8}{3}\right)$
 - (d) $\left(\frac{8}{3}, 2\right)$
- 63. ABC is an acute angled isosceles triangle. Two equal sides AB and AC lie on the lines 7x-y-3=0 and x+y-5=0. If θ is one of the equal 55 B Crac(b) angles, then what is $\cot \theta$ equal to?
 - (a) $\frac{1}{3}$
 - (b) $\frac{1}{2}$

 - (d) 2
- **64.** In the parabola $y^2 = 8x$, the focal distance of a point P lying on it is 8 units. Which of the following statements is/are correct?
 - 1. The coordinates of P can be $(6, 4\sqrt{3}).$
 - 2. The perpendicular distance of Pfrom the directrix of parabola is 8 units.

Select the correct answer using the code given below:

- (a) 1 only
- (b) 2 only
- (c) Both 1 and 2
- (d) Neither 1 nor 2
- 65. What is the eccentricity of the ellipse if the angle between the straight lines joining the foci to an extremity of the minor axis is 90°?
 - (a) $\frac{1}{3}$

 - (d) $\frac{1}{\sqrt{2}}$

66. Let $\vec{a} = \hat{i} - \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} - \hat{k}$. If $\vec{a} \times (\vec{b} \times \vec{a}) = \alpha \hat{i} - \beta \hat{j} + \gamma \hat{k}$, then what is the value of $\alpha + \beta + \gamma$? (a) 8

- (d)

- 67. If a vector of magnitude 2 units makes an angle $\frac{\pi}{3}$ with $2\hat{i}$, $\frac{\pi}{4}$ with $3\hat{j}$ and an acute angle θ with $4\hat{k}$, then what are the components of the vector?
 - (a) $(1, \sqrt{2}, 1)$
 - (b) $(1, -\sqrt{2}, 1)$
 - (c) $(1, -\sqrt{2}, -1)$
 - (d) $(1, \sqrt{2}, -1)$
 - 68. Consider the following in respect of moment of a force:
 - 1. The moment of force about a point is independent of point of application of force.
 - 2. The moment of a force about a line is a vector quantity.

Which of the statements given above is/are correct?

- (a) 1 only
- (b) 2 only
- (c) Both 1 and 2
- (d) Neither 1 nor 2
- 69. For any vector \overrightarrow{r} , what is

- 70. Let \overrightarrow{a} and \overrightarrow{b} are two vectors of magnitude 4 inclined at an angle $\frac{\pi}{3}$, then what is the angle between \vec{a} and $\vec{a} - \vec{b}$?
- (b) $\frac{\pi}{3}$
- (c)
- (d) $\frac{\pi}{6}$

71. Let $y_1(x)$ and $y_2(x)$ be two solutions of the differential equation $\frac{dy}{dx} = x$. If

 $y_1(0) = 0$ and $y_2(0) = 4$, then what is the number of points of intersection of the curves $y_1(x)$ and $y_2(x)$?

- (a) No point
- (b) One point
- (c) Two points
- (d) More than two points
- 72. The differential equation, representing the curve $y = e^{x}(a \cos x + b \sin x)$ where a and b are arbitrary constants, is

$$(a) \quad \frac{d^2y}{dx^2} + 2y = 0$$

(b)
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2y = 0$$

(c)
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$$

(d)
$$\frac{d^2y}{dx^2} + y = 0$$

73. If f(x) = ax - b and g(x) = cx + d are such that f(g(x)) = g(f(x)), then which one of the following holds?

$$(a) f(d) = g(b)$$

- (b) f(b) + g(d) = 0
- (c) f(a) + g(c) = 2a
- (d) f(d) + g(b) = 2d
- 74. What is $\int_{-1}^{1} (3\sin x \sin 3x) \cos^2 x dx$ equal to?

 - (b) 0
 - (c) $\frac{1}{2}$
 - (d)
- 75. What are the order and degree respectively of the differential equation

$$\left\{2 - \left(\frac{dy}{dx}\right)^2\right\}^{0.6} = \frac{d^2y}{dx^2} ?$$

- (a) 2, 2
- (b) 2, 3
- (c) 5, 2
- (d) 2, 5

- 76. If $\frac{dy}{dx} = 2e^x y^3$, $y(0) = \frac{1}{2}$ then what is $4y^2(2-e^x)$ equal to ? = ad-6+01+01

 - (d) 4
 - 77. Let $p = \int_{a}^{b} f(x) dx$ and $q = \int_{a}^{b} |f(x)| dx$. If $f(x) = e^{-x}$, then which one of the following is correct?
 - (a) p = 2q

 - (c) 4p = q
 - (d) p = q
 - 78. What is $\int_0^{\frac{\pi}{2}} \frac{a + \sin x}{2a + \sin x + \cos x} dx$ equal

- (b) $\frac{\pi}{2}$
- (c) 1
- (d) 0
- The non-negative values of b for which the function $\frac{16x^3}{3} - 4bx^2 + x$ has neither maximum nor minimum in the range x > 0 is
 - (a) 0 < b < 1
 - (b) 1 < b < 2
 - (c) b > 2
 - (d) $0 \le b < 1$

80. Which one of the following is correct

in respect of $f(x) = \frac{1}{\sqrt{|x| - x}}$ and

$$g(x) = \frac{1}{\sqrt{x - |x|}}$$
?

(a) f(x) has some domain and g(x) has no domain

- (b) f(x) has no domain and g(x) has some domain
- (c) f(x) and g(x) have the same domain
- (d) f(x) and g(x) do not have any domain

Consider the following for the next two (02) items that follow:

Given that $\int \frac{3\cos x + 4\sin x}{2\cos x + 5\sin x} dx =$ $\frac{\alpha x}{29} + \frac{\beta}{29} \ln \left| 2\cos x + 5\sin x \right| + c$

- 81. What is the value of α ?
 - (a) 7.
 - (b) 13
 - (c) 17
 - (d) 26
- 82. What is the value of β ?
 - (a) 7
 - (b) 13
 - (c) 17
 - (d) 26

Consider the following for the next two (02) items that follow:

Let
$$f(x) = \frac{x}{\ln x}$$
; $(x > 1)$

83. Consider the following statements:

1.f(x) is increasing in the interval (e, ∞)

2.f(x) is decreasing in the interval 7 not underste 3. 9ln7 > 7ln9

Which of the statements given above are correct?

- (a) 1 and 2 only
- (b) 2 and 3 only
- te f"=0
- (d) 1, 2 and 3

(c) 1 and 3 only

- 84. Consider the following statements:
 - 1. $f''(e) = \frac{1}{e}$
 - 2. f(x) attains local minimum value
 - 3. A local minimum value of f(x)is e

Which of the statements given above are correct?

- (a) 1 and 2 only
- (b) 2 and 3 only
- (c) 1 and 3 only
- (d) 1, 2 and 3

Consider the following for the next two (02) items that follow:

Let f(x) and g(x) be two functions such that

$$g(x) = x - \frac{1}{x}$$
 and $f \circ g(x) = x^3 - \frac{1}{x^3}$.

85. What is g[f(x)-3x] equal to?

(d)
$$x^2 + \frac{1}{x^2}$$

86. What is f''(x) equal to?

- (a) 1 and 2 only
- (b) 2 and 3 only
- (c) 1 and 3 only
- (d) 1, 2 and 3

What is
$$\lim_{x\to 0^-} h(x) + \lim_{x\to 0^+} h(x)$$
 equal $\lim_{x\to 0^+} h(x)$ equal $\lim_{x\to 0^+} h(x) = \lim_{x\to 0^+} h(x)$ (a) $\frac{3}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1}{2}$

(a)
$$-\frac{2}{x^3}$$

(b)
$$2x + \frac{2}{x^3}$$

(c)
$$6x + 3$$

(d) $6x$

Consider the following for the next two (02) items that follow:

Let f(x) = |x| + 1 and g(x) = [x] - 1, where [.] is the greatest integer function.

Let
$$h(x) = \frac{f(x)}{g(x)}$$

87. Consider the following statements:

- 1. f(x) is differentiable for all x < 0
- 2. g(x) is continuous at x = 0.0001
- 3. The derivative of g(x) at x = 2.5is 1

Consider the following for the next two (02) items that follow:

Let
$$\varphi(a) = \int_{a}^{a+100\pi} |\sin x| dx$$

89. What is $\varphi(a)$ equal to?

- $(a) \quad 0$
- (b) a
- (c) 100a
- (d) 200

90. What is $\varphi'(a)$ equal to ?

- (a) 0
- (b) π
- (c) 100
- (d) 200

Consider the following for the next two (02)

A differentiable function f(x) has a local maximum at x = 0. Let y = 2f(x) + ax - b.

91. Which of the following is/are correct?

1.
$$f'(0) = 0$$

2.
$$f''(0) < 0$$

Select the correct answer using the code given below:

- (b) 2 only
- (c) Both 1 and 2
- (d) Neither 1 nor 2
- 92. The function y has a relative maxima at x = 0 for

(a)
$$a > 0$$
, $b = 0$

- (b) for all b and a = 0
- (c) for all b > 0 only
- (d) for all a and b = 0

Consider the following for the next two (02) items that follow:

Let f(x) = |x - 1|, g(x) = [x] and h(x) = f(x)g(x) where [.] is greatest integer function.

93. What is $\int_{-1}^{0} h(x)dx$ equal to?

(a)
$$-\frac{3}{2}$$

(b)
$$-1$$

- (c) 0
- (d) $\frac{1}{2}$

94. What is $\int_0^2 h(x)dx$ equal to?

(a)
$$-\frac{3}{2}$$

- (b) -1
- (c) 0
- (d) $\frac{1}{2}$

Consider the following for the next two (02) items that follow:

Let
$$\int \frac{dx}{\sqrt{x+1} - \sqrt{x-1}} = \alpha (x+1)^{\frac{3}{2}} + \beta (x-1)^{\frac{3}{2}} + c$$

95. What is the value of α ?

- (a) $\frac{1}{3}$
- (b) $\frac{2}{3}$
- (c) 1
- (d) $\frac{4}{3}$

96. What is the value of β ?

- (a) $-\frac{2}{3}$
- (b) $-\frac{1}{3}$
- (c) $\frac{1}{3}$
- (d) $\frac{2}{3}$

Consider the following for the next two (02) items that follow:

The circle $x^2 + y^2 - 2x = 0$ is partitioned by line y = x in two segments. Let A_1 , A_2 be the areas of major and minor segments respectively.

97. What is the value of A_1 ?

(a)
$$\frac{\pi-2}{4}$$

(b)
$$\frac{\pi+2}{4}$$

$$(d) \quad \frac{3\pi+2}{4}$$

- (a) π
- (b)
- (c) -1
- (d) $-\pi$

Consider the following for the next two (02) items that follow:

Let
$$3f(x) + f\left(\frac{1}{x}\right) = \frac{1}{x} + 1$$

- 99. What is f(x) equal to?
 - (a) $\frac{1}{8x} \frac{x}{8} + \frac{1}{4}$
 - (b) $\frac{3}{8x} \frac{x}{8} + \frac{3}{4}$

(c)
$$\frac{3}{8x} + \frac{x}{8} + \frac{1}{4}$$

(d)
$$\frac{3}{8x} - \frac{x}{8} + \frac{1}{4}$$

100. What is $8\int_1^2 f(x)dx$ equal to?

- (a) $ln(8\sqrt{e})$
- (b) $ln(4\sqrt{e})$

- 102. If a random variable (x) follows binomial distribution with mean 5 and variance 4, and $5^{23}P(X=3) = \lambda 4^{\lambda}$, then what is the value of λ ?
 - (a) 3
 - (b) 5
 - (c) 23
 - (d) 25

105. If two random variables X and Y are connected by relation $\frac{2X-3Y}{5X+4Y} = 4$ and X follows Binomial distribution with parameters n = 10 and $p = \frac{1}{2}$, then what is the variance of Y? 900 (d) 106. If a, b, c are in HP, then what is $\frac{1}{b-a} + \frac{1}{b-c}$ equal to?

1.
$$\frac{2}{b}$$
2. $\frac{1}{a} + \frac{1}{c}$

3.
$$\frac{1}{2} \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right)$$

Select the correct answer using the code given below:

- (a) 1 only
- (b) 2 only
- (c) 3 only

(d)

- (d) 1, 2 and 3
- 107. An edible oil is sold at the rates 150, 200, 250, 300 rupees per litre in four consecutive years. Assuming that an equal amount of money is spent on oil by a family in every year during these years, what is the average price of oil in rupees (approximately) per litre?

1 are written down at random, then what is the probability that both Ts are always consecutive?

- 109. Let $m = 77^n$. The index n is given a positive integral value at random. What is the probability that the value of m will have 1 in the units place?
 - (a) $\frac{1}{2}$
 - (b) $\frac{1}{3}$
 - (c) $\frac{1}{4}$
 - (d) $\frac{1}{n}$
- 110. Three different numbers are selected at random from the first 15 natural numbers. What is the probability that the product of two of the numbers is equal to third number?
 - (a) $\frac{1}{91}$
 - (b) $\frac{2}{455}$
 - (c) $\frac{1}{65}$
 - (d) $\frac{6}{455}$

Consider the following for the next two (02) items that follow:

Let A and B be two events such that $P(A \cup B) \ge 0.75$ and $0.125 \le P(A \cap B) \le 0.375$.

- 111. What is the minimum value of P(A) + P(B)?
 - (a) 0.625
 - (b) 0.750
 - (c) 0.825
 - (d) 0.875
- 112. What is the maximum value of P(A) + P(B)?
 - (a) 0.75
 - (b) 1·125
 - (c) 1·375
 - (d) 1.625

Consider the following for the next two (02) items that follow:

A, B and C are three events such that P(A) = 0.6, P(B) = 0.4, P(C) = 0.5, $P(A \cup B) = 0.8$, $P(A \cap C) = 0.3$ and $P(A \cap B \cap C) = 0.2$ and $P(A \cap B \cap C) = 0.2$

P(AUBUC) ≥ 0.85. P(A)+P(D)+P()+P(D)-P(DD)-P(DUC)+

- 113. What is the minimum value of $P(B \cap C)$?
 - (a) 0·1
 - (b) 0·2
 - (c) 0·35
 - (d) 0.45

- 114. What is the maximum value of $P(B \cap C)$?
 - (a) 0·1
 - (b) 0·2
 - (c) 0·35
 - (d) 0·45

Consider the following for the next two (02) items that follow:

An unbiased coin is tossed n times. The probability of getting at least one tail is p and the probability of at least two tails is q and $p-q=\frac{5}{32}$.

- 115. What is the value of n?
 - (a) 4
 - (b) 5
 - (c) 6
 - (d) 7
- 116. What is the value of p+q?

(a)
$$\frac{57}{32}$$

(b)
$$\frac{53}{32}$$

(c)
$$\frac{51}{32}$$
 (d) 1 $\frac{50}{32}$

Consider the following for the next two (02) items that follow:

x_i	1	2	3	•••	n
f_i	1	2-1	2-2	•	$2^{-(n-1)}$

117. What is $\sum_{i=1}^{n} x_i f_i$ equal to?

$$(4a)^{n+1} \frac{2^{n+1} - n + 2}{2^{n-1}}$$

(b)
$$\frac{2^{n+1}-n-2}{2^{n-1}}$$

(c)
$$\frac{2^{n+1}+n+2}{2^{n-1}}$$

(d)
$$\frac{2^{n+1}-n-2}{2^n}$$

118. What is the mean of the distribution?

(a)
$$\frac{2^{n+1}-n+2}{2^n-1}$$

(b)
$$\frac{2^{n+1}-n-2}{2^{n-1}}$$

(c)
$$\frac{2^{n+1}-n-2}{2^n-1}$$

Consider the following for the next two (02) items that follow:

The marks obtained by 10 students in a Statistics test are 24, 47, 18, 32, 19, 15, 21, 35, 50 and 41

- 119. What is the mean deviation of the largest five observations?
 - (a) 4.8
 - (b) 5.5
 - (c) 6
 - (d) 7.5
- 120. What is the variance of the largest five observations?
 - (a) 14·6
 - (b) 21·8
 - (c) 25·2
 - (d) 46.8