

12 June 2024 Live Classes Schedule

8:00AM 12 JUNE 2024 DAILY CURRENT AFFAIRS RUBY MA'AM

9:00AM - 12 JUNE 2024 DAILY DEFENCE UPDATES DIVYANSHU SIR

SSB INTERVIEW LIVE CLASSES

9:00AM -- OVERVIEW OF PIQ & PERSONAL INTERVIEW ANURADHA MA'AM

AFCAT 2 2024 LIVE CLASSES

2:30PM -- STATIC GK - HIGHEST SMALLEST IN INDIA & WORLD DIVYANSHU SIR

4:00PM MATHS - TRIGONOMETRY - CLASS 2 NAVJYOTI SIR

5:30PM - ENGLISH - CLOZE TEST - CLASS 1 ANURADHA MA'AM

NDA 2 2024 LIVE CLASSES

11:30AM GK - INDIAN GEOGRAPHY - CLASS 1 RUBY MA'AM

2:30PM GS - CHEMISTRY - CLASS 3 SHIVANGI MA'AM

5:30PM -- (ENGLISH - CLOZE TEST - CLASS 1 ANURADHA MA'AM

6:30PM MATHS - SEQUENCE & SERIES - CLASS 1 NAVJYOTI SIR

CDS 2 2024 LIVE CLASSES

11:30AM GK - INDIAN GEOGRAPHY - CLASS 1 RUBY MA'AM

2:30PM GS - CHEMISTRY - CLASS 3 SHIVANGI MA'AM

4:00PM MATHS - TRIGONOMETRY - CLASS 2 NAVJYOTI SIR

5:30PM ENGLISH - CLOZE TEST - CLASS 1 ANURADHA MA'AM

EXAMS

SSBCrack

WHAT WILL WE STUDY?

- Sequence
- Series and Progression
- Arithmetic Progression (AP)
- Arithmetic Mean (AM)
- Geometric Progression (GP)
- Geometric Mean (GM)
- Special Series

SSBCrack

SEQUENCE

$$t_n = 3 + 2n$$

$$n = 0 \longrightarrow (3)$$

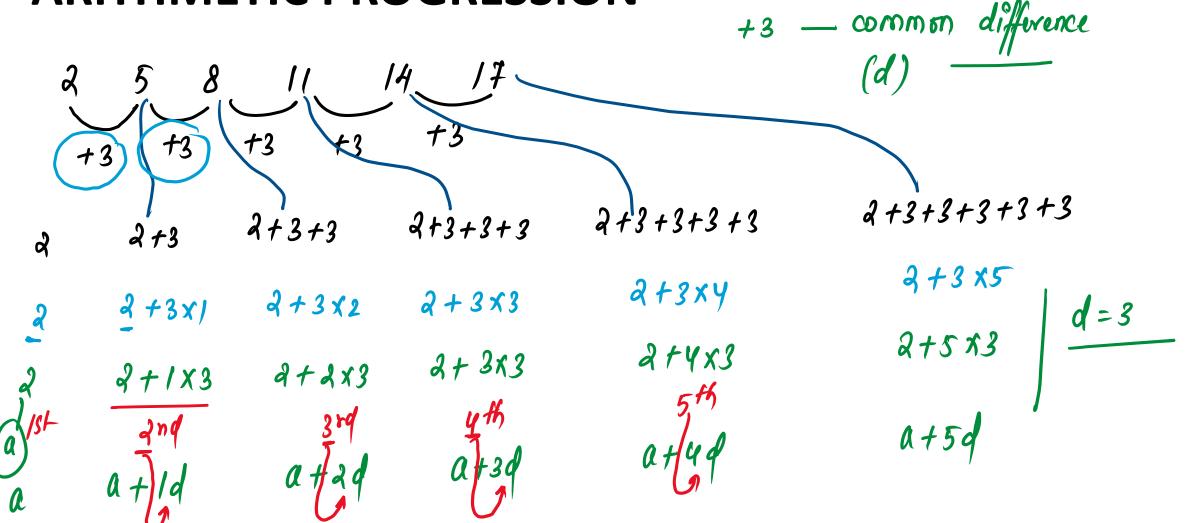
$$\gamma = / \longrightarrow \widehat{(5)}$$

$$n = 2 \longrightarrow (7)$$

$$n=3 \rightarrow 9$$

SERIES & PROGRESSION

ARITHMETIC PROGRESSION



SUM OF TERMS IN AP

$$a, \quad a_{a} \quad a_{3} \quad a_{4} \quad$$

SUPPOSITION OF TERMS IN A.P.

When number of terms be odd then we take,

3 terms as : a – d, a, a + d 5 terms as : a – 2d, a – d, a, a + d, a + 2d

middle ferm = a

common difference = d

When number of terms be even then we take

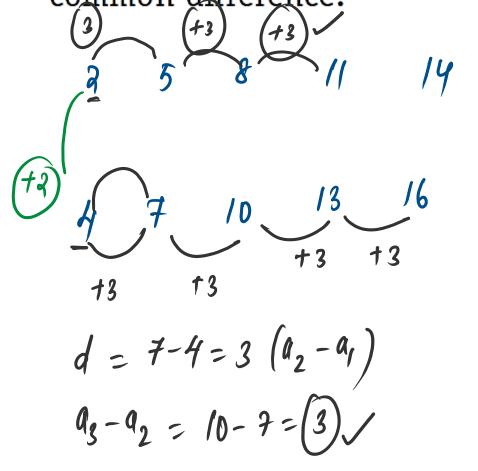
4 terms as: a - 3d, a - d, a + d, a + 3d

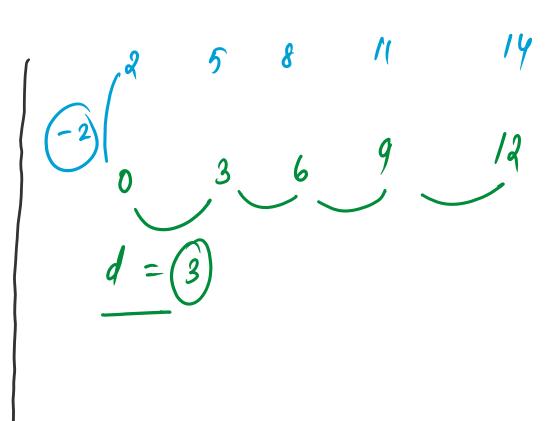
6 terms as: a - 5d, a - 3d, a - d, a + d, a + 3d, a + 5d

middle term = a-d, a+9

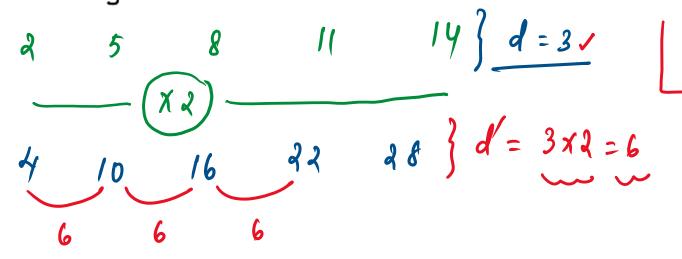
common difference = 2d.

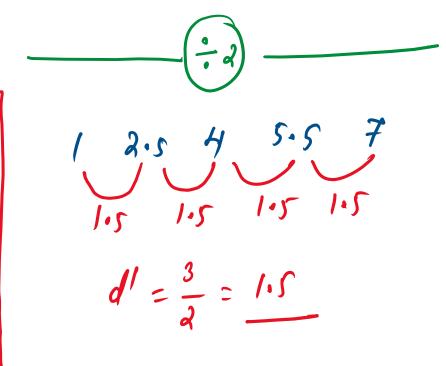
If a constant is added to or subtracted from each term of an AP, then the resulting sequence is also an AP with the same common difference.





If each term of a given AP is multiplied or divided by a non-zero constant k, then the resulting sequence is also an AP with common difference kd or d/k, where d is the common difference of the given AP.





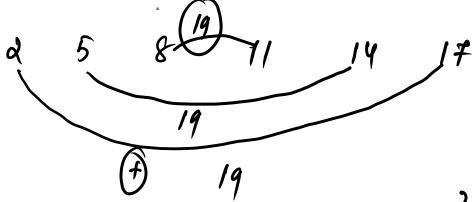
If a_1, a_2, a_3, \dots and b_1, b_2, b_3, \dots are two A.P., then

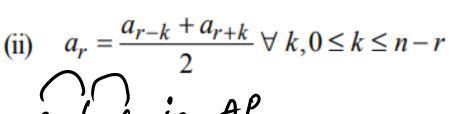
- (i) $a_1 \pm b_1$, $a_2 \pm b_2$, $a_3 \pm b_3$ are also in A.P.
- (ii) $a_1b_1, a_2b_2, a_3b_3 \dots$ and $\frac{a_1}{b_1}, \frac{a_2}{b_2}, \frac{a_3}{b_3}, \dots$ are not in A.P.

divide:
$$\frac{3}{11}$$
 $\frac{3}{9}$ $\frac{1}{7}$ \times (0.79...) (0.35...) (1.14...) \sim 0.35 \sim 0.65

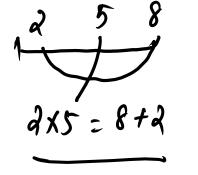
If $a_1, a_2, a_3, \dots, a_n$ are in A.Ps., then

(i)
$$a_1 + a_n = a_2 + a_{n-1} = a_3 + a_{n-2} = \dots$$





$$b-a=c-b \Rightarrow$$



If n^{th} term of any sequence is linear expression in n, then the sequence is an A. P.

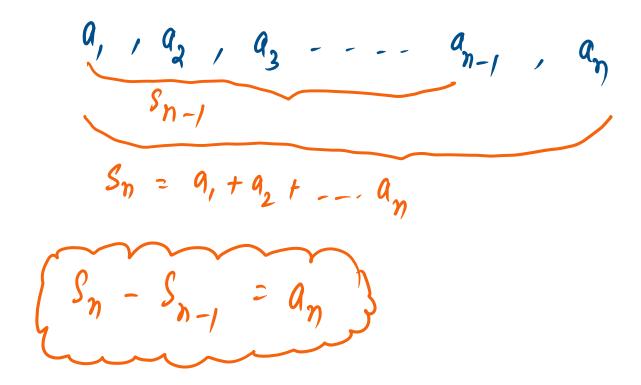
$$a_n = 4+3n$$
 | 5+6n (power of $n=1$)

$$S_n = 4n^2 + 3n + 2$$
 (power of $n = 2$)

If sum of *n* terms of any sequence is a quadratic expression in *n*, then sequence is an A. P.

$$S_{n} = 4n^{2} + 3n + 2 \quad (power of n = 2)$$

$$(n^{2})$$



ARITHMETIC MEAN (AM)

a & b be & numbers
$$\Rightarrow$$
 AM = $\frac{a+b}{a}$
'n' numbers \Rightarrow AM = $\frac{a_1+a_2-a_n}{n}$
 (a_1, a_2--a_n)

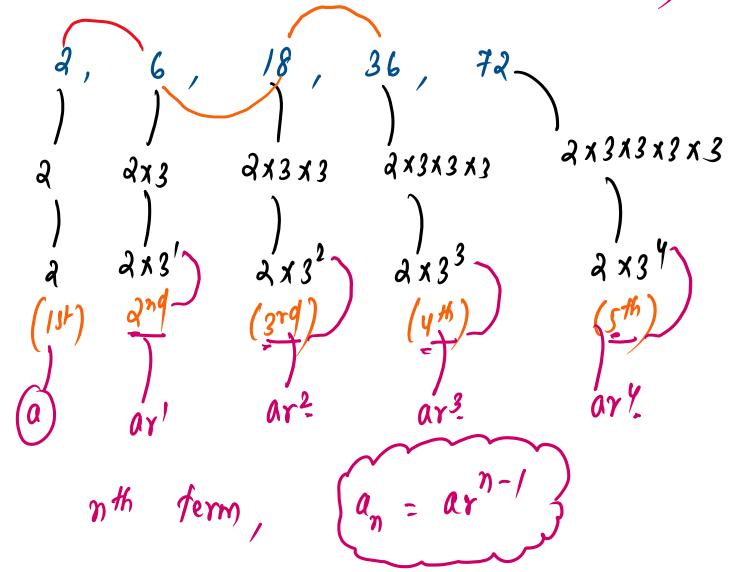
det A_1, A_2--A_n be (n) Arithmetic Means between $a \in b$,

(a) A_1, A_2, A_3--A_n be will form an AP.

(a) a_1, a_2, a_3--A_n be will form an AP.

(a) a_1, a_2, a_3--A_n be a_1, a_2 a_1, a_2 a_2 a_1, a_3 a_1, a_2 a_1, a_2 a_1, a_2 a_1, a_2 a_1, a_3 a_1, a_4 $a_1,$

GEOMETRIC PROGRESSION (9P)



SUM OF TERMS IN GP

$$r > / \qquad S_n = \frac{a(s^n - 1)}{r - 1}$$

$$\frac{r < 1}{\sqrt{1-r^n}} \qquad \qquad S_n = \frac{a(1-r^n)}{1-r}$$

-> (special case): sum to infinite terms,
$$(m/y)$$
 for $r<1$)
$$n \to \infty, \quad r^n \to 0 \quad |s_{\infty}|^2 = \frac{a(1-o)}{1-r} = \frac{a}{1-r}$$

SUPPOSITION OF TERMS IN GP

Odd no. of terms,

middle term = a; common ratio = r

$$\frac{3 \text{ terms}}{r} - \frac{a}{r}$$
, a, ar $\frac{a}{r^2}$, $\frac{a}{r}$, a, ar, ar

even no. of terms,

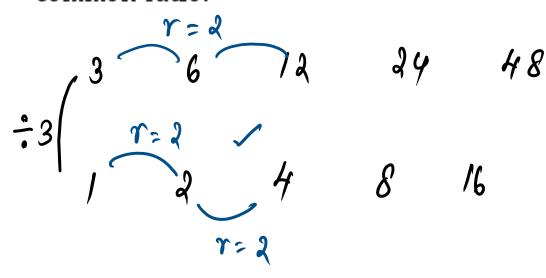
middle ferm:
$$\frac{a}{r}$$
, ar

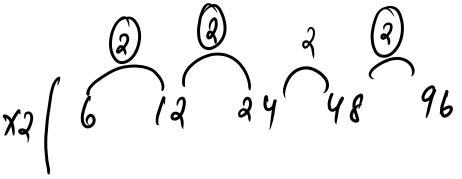
4 terms: $\frac{a}{r^3}$, $\frac{a}{r}$, ar, ar³

common ratio: r²

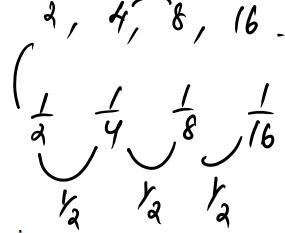
6 terms:
$$\frac{a}{r^5}$$
, $\frac{a}{r^8}$, $\frac{a}{r}$, ar, ar, ar

If all the terms of a GP be multiplied or divided by the same non-zero constant, then it remains a GP with the same common ratio.





The reciprocals of the terms of a given GP form a GP. $(new common ratio > \frac{1}{r})$

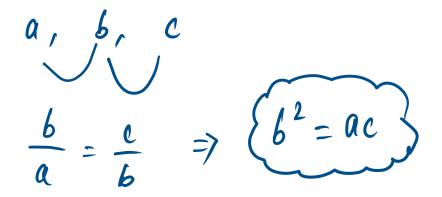


If each terms of a GP be raised to the same power, the resulting sequence also forms a GP.

$$3 \quad 6 \quad 12 \quad r = 2$$

$$3^{2} \quad 6^{2} \quad 12^{2} \Rightarrow 9 \quad 36 \quad 144 \quad r = r^{2}$$

Three non-zero numbers, a, b and c are in GP, if $b^2 = ac$.



If $a_1, a_2, a_3, ..., a_n, ...$ is a GP of non-zero, non-negative terms, then $\log a_1, \log a_2, ..., \log a_n, ...$ is an AP and vice-versa.

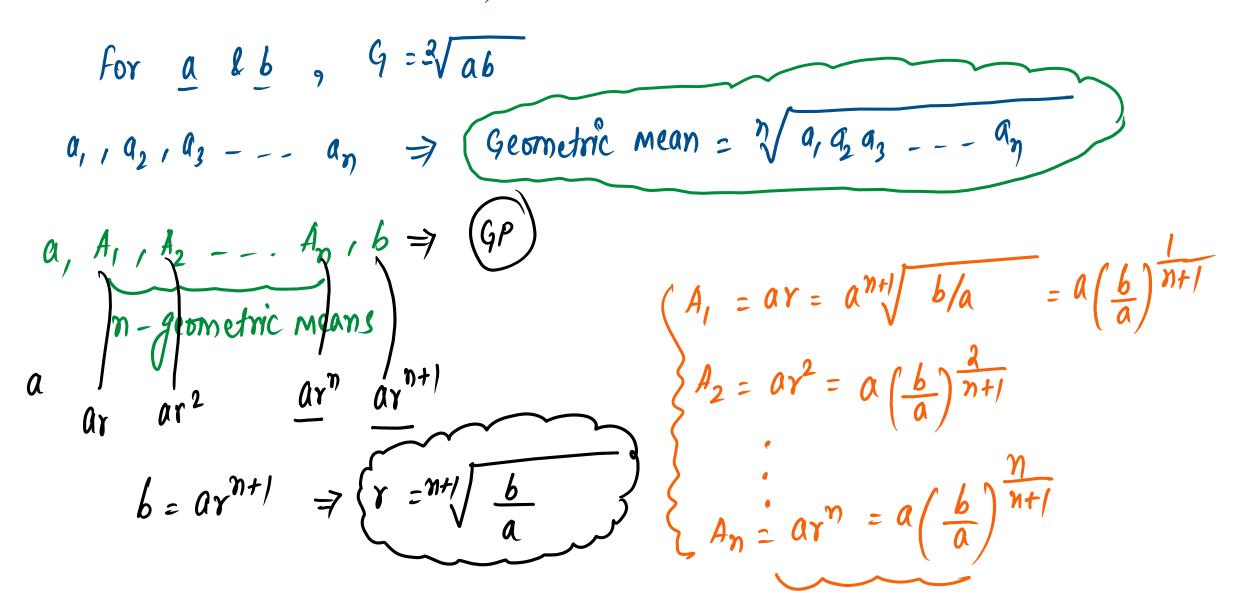
$$\frac{q_{2}}{q_{1}} = \frac{q_{3}}{q_{3}} = \frac{q_{4}}{q_{3}}^{2} = -\frac{q_{5}}{q_{3}}$$

$$log \left(\frac{q_2}{a_1}\right) = log \left(\frac{q_3}{a_2}\right) = log a_2 - log a_3 - log a_2 / log a_1, log a_3 - log a_4$$

(Common difference is same)

SSBCrack

GEOMETRIC MEAN (6)



SUM TO n TERMS OF SPECIAL SERIES

Sum of first n natural numbers

$$= 1 + 2 + 3 + 4 + \dots + n = \sum n = \frac{n(n+1)}{2}$$

Sum of squares of *n* natural numbers

$$= 1^{2} + 2^{2} + 3^{2} + 4^{2} + \dots + n^{2} = \sum n^{2} = \frac{n(n+1)(2n+1)}{6}$$

Sum of cubes of *n* natural numbers

$$= 1^3 + 2^3 + 3^3 + 4^3 + \ldots + n^3$$

$$= \Sigma n^3 = \frac{n^2(n+1)^2}{4} = \left[\frac{n(n+1)}{2}\right]^2 = [\Sigma n]^2$$

$$a_n = A \underline{n}^3 + B n^2 + C n + \underline{D}$$

$$S_n = \begin{cases} a_{\eta} \\ = A \underset{=}{ \times} n^3 + B \underset{=}{ \times} n^2 + C \underset{=}{ \times} n + D \end{cases}$$

OTHER RESULTS

$$1+3+5+...$$
 to n terms = n^2 .
Sum of n odd terms = n^2

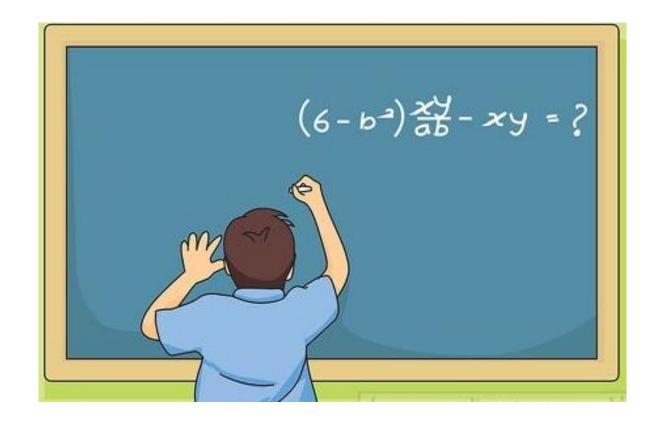
$$2 + 4 + 6 + \dots \text{ to } \mathcal{A} \text{ terms} = n(n+1)$$

$$\frac{3(1+2+3+-\dots n)}{3n(n+1)} = n(n+1)$$

SSBCrack

OTHER RESULTS

If a, b and c are in AP as well as in GP, then a = b = c.



If a, b and c (a > 0, c > 0) are in GP, then consider the following in respect of the equation $ax^2 + bx + c = 0$: Which of the statements given above are correct?

- 1. The equation has imaginary roots.
- (b) 2 and 3 only

(a) 1 and 2 only

- 2. The ratio of the roots of the equation is $1:\omega$ where ω is a cube root of unity.
- (c) 1 and 3 only
- (d) 1, 2 and 3
- 3. The product of roots of the equation is $\left(\frac{b^2}{a^2}\right)$.

[2024 (I)]

If a, b and c (a > 0, c > 0) are in GP, then consider the following in respect of the equation $ax^2 + bx + c = 0$: Which of the statements given above are correct?

- 1. The equation has imaginary roots.
- (b) 2 and 3 only

(a) 1 and 2 only

- 2. The ratio of the roots of the equation is $1:\omega$ where ω is a cube root of unity.
- (c) 1 and 3 only
- (d) 1, 2 and 3
- 3. The product of roots of the equation is $\left(\frac{b^2}{a^2}\right)$.

[2024 (I)]

Ans: (d)

If p^2 , q^2 and r^2 (where p, q, r > 0) are in GP, then which of the following is/are correct? [NDA/NA 2020-I]

- 1. p, q and r are in GP.
- 2. $\ln p$, $\ln q$ and $\ln r$ are in AP.

Select the correct answer using the code given below:

(a) 1 only (b) 2 only

(c) Both 1 and 2 (d) Neither 1 nor 2

If p^2 , q^2 and r^2 (where p, q, r > 0) are in GP, then which of the following is/are correct? [NDA/NA 2020-I]

- 1. p, q and r are in GP.
- 2. $\ln p$, $\ln q$ and $\ln r$ are in AP.

Select the correct answer using the code given below:

- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2

Ans: (c)

Let a, b, c be in AP and $k \neq 0$ be a real number. Which of the following are correct? [NDA/NA 2019-II]

- 1. ka, kb, kc are in AP 2. k-a, k-b, k-c are in AP
- $\frac{a}{k}, \frac{b}{k}, \frac{c}{k}$ are in AP

Select the correct answer using the code given below:

- 1 and 2 only (b) 2 and 3 only
- (c)
- 1 and 3 only (d) 1, 2 and 3

Let a, b, c be in AP and $k \neq 0$ be a real number. Which of the following are correct? [NDA/NA 2019-II]

- 1. ka, kb, kc are in AP 2. k-a, k-b, k-c are in AP
- 3. $\frac{a}{k}, \frac{b}{k}, \frac{c}{k}$ are in AP

Select the correct answer using the code given below:

- 1 and 2 only (b) 2 and 3 only
- 1 and 3 only (d) 1, 2 and 3 (c)

Ans: (d)

- Q) What is the product of first 2n + 1 terms of a geometric progression?
 - (a) The (n + 1)th power of the nth term of the GP
 - (b) The (2n + 1)th power of the nth term of the GP
 - (c) The (2n + 1)th power of the (n + 1)th term of the GP
 - (d) The nth power of the (n + 1)th terms of the GP

- Q) What is the product of first 2n + 1 terms of a geometric progression?
 - (a) The (n + 1)th power of the nth term of the GP
 - (b) The (2n + 1)th power of the nth term of the GP
 - (c) The (2n + 1)th power of the (n + 1)th term of the GP
 - (d) The nth power of the (n + 1)th terms of the GP

Ans: (c)

- Q) The equation $(a^2 + b^2) x^2 2b (a + c) x + (b^2 + c^2) = 0$ has equal roots. Which one of the following is correct about a, b, and c?
 - (a) They are in AP
 - (b) They are in GP
 - (c) They are in HP
 - (d) They are neither in AP, nor in GP, nor in HP

- Q) The equation $(a^2 + b^2) x^2 2b (a + c) x + (b^2 + c^2) = 0$ has equal roots. Which one of the following is correct about a, b, and c?
 - (a) They are in AP
 - (b) They are in GP
 - (c) They are in HP
 - (d) They are neither in AP, nor in GP, nor in HP

Ans: (b)

Q) If a, b, c are in geometric progression and a, 2b, 3c are in arithmetic progression, then what is the common ratio r such that 0 < r < 1?

(a) $\frac{1}{3}$

(b) $\frac{1}{2}$

(c) $\frac{1}{4}$

(d) $\frac{1}{8}$

Q) If a, b, c are in geometric progression and a, 2b, 3c are in arithmetic progression, then what is the common ratio r such that 0 < r < 1?

(a) $\frac{1}{3}$

(b) $\frac{1}{2}$

(c) $\frac{1}{4}$

(d) $\frac{1}{8}$

Ans: (a)

Q) If a, b and c are three positive numbers in an arithmetic progression, then:

(a) $ac > b^2$

- (b) $b^2 > a + c$
- (c) $ab + bc \le 2ac$
- (d) $ab + bc \ge 2ac$

Q) If a, b and c are three positive numbers in an arithmetic progression, then:

(a) $ac > b^2$

(b) $b^2 > a + c$

- (c) $ab + bc \le 2ac$
- (d) $ab + bc \ge 2ac$

Ans: (d)

Summary

- Sequence
- Series and Progression
- Arithmetic Progression (AP)
- Arithmetic Mean (AM)
- Geometric Progression (GP)
- Geometric Mean (GM)
- Special Series
- Practise MCQs

