10 July 2024 Live Classes Schedule

SSB INTERVIEW LIVE CLASSES
9:OOAM OVERVIEW OF GTO ANURADHA MA'AM

CDS 22024 LIVE CLASSES

1:00PM	GS - PHYSICS - CLASS 9	NAVJYOTI SIR
5:30PM	ENGLISH - USAGE OF PAIRED WORDS - CLASS 2	ANURADHA MA'AM

LOGARITHMS

$$
\underline{a}^{m}=\underline{b}
$$

$$
\left(\log _{a} b=m\right)
$$

$$
\log _{10}(0.001)=-3
$$

$$
\begin{align*}
& 2^{x}=8 \quad \Rightarrow x=3 \\
& 2^{x}=5 \Rightarrow \text { (to find values of } x, \log \text { is used) } \\
& 4^{3}=64 \quad \log _{10} 100=2 \\
& \log _{4} 64=3 \\
& \log _{10}\left(\frac{1}{100}\right)=\log _{10}\left(10^{-2}\right) \\
& \log _{6} 216=3
\end{align*}
$$

NDA 22024 - MATHS - LIVE CLASS
PROPERTIES
\log of zero and negative numbers is not defined.

Base of \log is always positive but not equal to 1 .
(1)

$$
\begin{aligned}
& \log _{m}(a \cdot b)=\log _{m} a+\log _{m} b \\
& \left(\frac{\left(\log _{m} a+\log _{m} b ; \log _{m} a \cdot \log _{m} b\right.}{\text { no formulas }}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \log _{a} b, \frac{b>0}{(\text { non-negative })} \\
& \left.\frac{a>0, a \neq 1}{\log _{1} 4=} \begin{array}{l}
\text { no power of } 1 \\
\text { is } 4, \text { all are } 1
\end{array}\right)
\end{aligned}
$$

(2) $\log _{m}\left(\frac{a}{b}\right)=\log _{m}(a)-\log _{m}(b)$

NDA 22024 - MATHS - LIVE CLASS
PROPERTIES
(3) $\log _{m}\left(a^{b}\right)=b \log _{m} a$
(4) $\log _{b} a=\frac{\log _{m} a}{\log _{m} b}$ (base change)
(5) $\log _{b} a=\frac{1}{\log _{a} b}$

If $f(x)=\log _{10}(1+x)$, then what is $4 f(4)+5 f(1)-\log _{10} 2$ equal to ?
A. 0

$$
f(4)=\log _{10}(1+4)=\log _{10} 5
$$

B. 1

$$
f(1)=\log _{10}(1+1)=\log _{10} 2
$$

C. 2
D. 4

$$
\begin{aligned}
& 4 \log _{10} 5+5 \log _{10} 2-\log _{10} 2 \\
& \frac{4 \log _{10} 5+4 \log _{10} 2}{4\left(\log _{10} 5+\log _{10} \alpha\right)=4 \log _{10}(5 \times 2)=4 \log _{10}(10)} \begin{aligned}
& 1 \\
&=4 \times 1=4
\end{aligned}
\end{aligned}
$$

If $f(x)=\log _{10}(1+x)$, then what is $4 f(4)+5 f(1)-\log _{10} 2$ equal to ?
A. 0
B. 1
C. 2
D. 4

IDA 22024 - MATHS - LIVE CLASS
What is the value of $\log _{7} \log _{7} \sqrt{7 \sqrt{7-\sqrt{7}}} ?$
A. $3 \log _{2} 7$

$$
\sqrt{7 \sqrt{7}}=\sqrt{7^{\prime} \cdot 7^{\frac{1}{2}}}=\sqrt{7^{3 / 2}}=\left(7^{3 / 2}\right)^{\frac{1}{2}}=7^{3 / 4}
$$

B. $1-3 \log _{2} 7$
C. $1-3 \log _{7} 2$

$$
\sqrt{7 \cdot 7^{\frac{3}{4}}}=\sqrt{7^{1+\frac{3}{4}}}=\left(7^{\frac{7}{4}}\right)^{\frac{1}{2}}=\frac{7 \frac{7}{8}}{70}
$$

D. $\frac{7}{8}$

$$
\begin{aligned}
& \log _{7} \log _{7}\left(7^{\frac{7}{8}}\right)-\log _{m}\left(a^{b}\right)=b \log _{m} a \\
& \log _{7}\left(\frac{7}{8} \log _{7}(7)\right) \\
& \log _{7}\left(\frac{7}{8} \times 1\right)=\log _{7}\left(\frac{7}{8}\right)=\log _{m}\left(\frac{a}{b}\right)=\log _{m} a-\log _{m} 2 \\
& \log _{m}(7)-\log _{7}(8)=1-\log _{7}\left(2^{3}\right)
\end{aligned}
$$

NDA 22024 - MATHS - LIVE CLASS
What is the value of $\log _{7} \log _{7} \sqrt{7 \sqrt{7 \sqrt{7}}}$
?
A. $3 \log _{2} 7$
B. $1-3 \log _{2} 7$
C. $1-3 \log _{7} 2$
D. $\frac{7}{8}$

NDA 22024 - MATHS - LIVE CLASS
What is the value of $\log _{9} 27+\log _{8} 32$?
A. $7 / 2$
B. $19 / 6$

$$
\frac{\log _{3} 27}{\log _{3} 9}+\frac{\log _{2} 32}{\log _{2} 8}
$$

$$
\left(\log _{a} b\right)=\left(\frac{\log _{\underline{m}} b}{\log _{\underline{m}} a}\right)
$$

C. 4
D. 7

$$
=\frac{3}{2}+\frac{5}{3}
$$

$$
=\frac{9+10}{6}=\frac{19}{6}
$$

What is the value of $\log _{9} 27+\log _{8} 32$?

A. $7 / 2$
B. $19 / 6$
C. 4
D. 7

If $(0.2)^{x}=2$ and $\log _{10} 2=0.3010$, then what is the value of x to the nearest tenth ?

$$
(0.2)^{x}=2
$$

$$
x\left(\log _{10} 2-1\right)=\log _{10} 2
$$

A. -10.0
B. -0.5

厄. -0.4

$$
\log _{10}(0.2)^{x}=\log _{10} 2
$$

$x=\frac{\log _{10} 2}{\log _{10} 2-1}=\frac{0.3010}{0.3010-1}$
D. -0.2

$$
\begin{aligned}
x \log _{10}(0.2) & =\log _{10} 2 \\
x \log _{10}\left(\frac{2}{10}\right) & =\log _{10} 2 \\
x\left(\log _{10} 2-\log _{10} 10\right) & =\log _{10} 2
\end{aligned}
$$

$$
\begin{gathered}
\approx \frac{0.3}{-0.7} \approx-\frac{3}{7} \\
\underline{-0.42} \\
\approx-0.4
\end{gathered}
$$

If $(0.2)^{x}=2$ and $\log _{10} 2=0.3010$, then what is the value of x to the nearest tenth ?
A. -10.0
B. -0.5
C. -0.4
D. -0.2

NDA 22024 - MATHS - LIVE CLASS
If $\mathrm{n}=\left(\underline{\text { (2017 })}\right.$!, then what is $\frac{1}{\log _{2} n}+\frac{1}{\log _{3} n}+\frac{1}{\log _{4} n}+\ldots+\frac{1}{\log _{2017} n} \quad$ equal to ?
A. 0

B. 1
C. $n / 2 \quad \log _{n} 2+\log _{n} 3+\log _{n} 4+\cdots \log _{n} 2017$
D. n

$$
\begin{aligned}
& \log _{n}(2 \cdot 3 \cdot 4 \ldots 2017) \\
& \left.\log _{n}(1 \cdot 2 \cdot 3 \cdot 4 \ldots 2017)=\log _{20171_{0}}(20171)=1\right\}
\end{aligned}
$$

NDA 22024 - MATHS - LIVE CLASS
If $n=(2017)!$, then what is $\frac{1}{\log _{2} n}+\frac{1}{\log _{3} n}+\frac{1}{\log _{4} n}+\ldots+\frac{1}{\log _{2017} n} \quad$ equal to ?
A. 0
B. 1
C. $\mathrm{n} / 2$
D. n

IDA 22024 - MATHS - LIVE CLASS If $x+\log _{15}\left(1+3^{x}\right)=x \log _{15} 5+\log _{15} 12$, where x is an integer, then what is x equal to ?
A. -3

$$
\log _{15} 15^{x}+\log _{15}\left(1+3^{x}\right)=\log _{15} 5^{x}+\log _{15}(12)
$$

B. 2
C. 1

$$
\frac{\log _{15}}{1}\left(15^{x}\left(1+3^{x}\right)\right)=\frac{\log _{15}\left(12 \cdot 5^{x}\right)}{1}
$$

$$
3^{x}\left(1+3^{x}\right)=12
$$

D. 3

$$
\begin{aligned}
& =15^{x}\left(1+3^{x}\right)=12 \cdot 5^{x} \\
& \Rightarrow \frac{15^{x}}{5^{x}}\left(1+3^{x}\right)=12
\end{aligned}
$$

$$
3^{x}+3^{2 x}=12
$$

NDA 22024 - MATHS - LIVE CLASS
If $x+\log _{15}\left(1+3^{x}\right)=x \log _{15} 5+\log _{15} 12$, where x is an integer, then what is x equal to ?
A. -3
B. 2
C. 1
D. 3

For what values) of x is $\log _{10}\left\{999+\sqrt{x^{2}-3 x+3}\right\}=3 \quad ?$
A. 0,1

$$
\log _{10}\left(999+\sqrt{x^{2}-3 x+3}\right)=\log _{10} 10^{3}
$$

B. 1

$$
999+\sqrt{x^{2}-3 x+3}=10^{3}
$$

C. 2
D. 1,2
squaring, -

$$
\sqrt{x^{2}-3 x+3}=1000-999=1
$$

$$
\begin{aligned}
& x^{2}-3 x+2=0 \\
& (x-1)(x-2)=0 \\
& x=1,2
\end{aligned}
$$

NDA 22024 - MATHS - LIVE CLASS
For what value(s) of x is $\log _{10}\left\{999+\sqrt{x^{2}-3 x+3}\right\}=3 \quad$?
A. 0,1
B. 1
C. 2
D. 1,2 $\frac{1}{\left(\log _{a} b c\right)+1}+\frac{1}{\left(\log _{b} a c\right)+\underline{1}}+\frac{1}{\left(\log _{c} a b\right)+1}$ is equal to
A. $1 \frac{1}{\log _{a} b c+\log _{a} a}+\frac{1}{\log _{b} a c+\log _{b} b}+\frac{1}{\left(\log _{c} a b\right)+\log _{c} c}$
C. $0 \quad \frac{1}{\log _{a}(a b c)}+\frac{1}{\log _{6}(a b c)}+\frac{1}{\log _{c}(a b c)}$
$=\log _{a b c} a+\log _{a b c} b+\log _{a b c} c=\log _{a b c}(a \cdot b \cdot c)$

$$
=\log _{a b c}(a b c)=\left\{\quad \log _{a b c} \quad \log _{a} b=\frac{1}{\log _{b} a}\right.
$$

NDA 22024 - MATHS - LIVE CLASS
$\frac{1}{\left(\log _{a} b c\right)+1}+\frac{1}{\left(\log _{b} a c\right)+1}+\frac{1}{\left(\log _{c} a b\right)+1}$ is equal to
A. 1
B. 2
C. 0
D. abc

NDA 22024 - MATHS - LIVE CLASS
What is the value of $\frac{\log _{\sqrt{\alpha \beta}}(H)}{\log _{\sqrt{\alpha \beta \gamma}}(H)}$?
(a) $\log _{\alpha \beta}(\alpha)$
(b) $\log _{\alpha \beta \gamma}(\alpha \beta)$
(c) $\log _{\alpha \beta}(\alpha \beta \gamma)$
(d) $\log _{\alpha \beta}(\beta)$

What is the value of $\frac{\log _{\sqrt{\alpha \beta}}(H)}{\log _{\sqrt{\alpha \beta \gamma}}(H)}$?
(a) $\log _{\alpha \beta}(\alpha)$
(b) $\log _{\alpha \beta \gamma}(\alpha \beta)$
(c) $\log _{\alpha \beta}(\alpha \beta \gamma)$
(d) $\log _{\alpha \beta}(\beta)$

NDA 22024 - MATHS - LIVE CLASS
If $\log _{y} x=8$ and $\log _{10 y} 16 x=4$, then find the value of y .
(a) 1
(b) 2
(c) 3
(d) 5

$$
\begin{align*}
& \log _{y} x=8 \\
& x=y^{8}-(1) \tag{1}\\
& \log _{10 y} 16 x=4 \\
& 16 x=(10 y)^{4} \\
& 16 y^{8}=10^{4} y^{4} \quad(\operatorname{From}(1))
\end{align*}
$$

$$
\begin{aligned}
& y^{8} \\
& y^{4}
\end{aligned}=\frac{10^{4}}{2^{4}}=\left(\frac{10}{2}\right)^{4}
$$

NDA 22024 - MATHS - LIVE CLASS
If $\log _{y} x=8$ and $\log _{10 y} 16 x=4$, then find the value of y.
(a) 1
(b) 2
(c) 3
(d) 5

If $\log _{10} x-\log _{10} \sqrt{x}=2 \log _{x} 10$, then a possible value of x is given by
(a) 10
(b) $1 / 100$
(c) $1 / 1000$
(d) None of these

$$
\log _{10}\left(\frac{x}{\sqrt{x}}\right)=2 \times \frac{1}{\log _{10} x}
$$

(a) $x=10 \longrightarrow L H S=\frac{1}{2} \times 1=\frac{1}{2}$
(c) $-\frac{3}{2} x-3=\frac{9}{2} \alpha$
(b) $x=\frac{1}{100} \rightarrow$ LHS $=-1 x-2=$ (2)

If $\log _{10} x-\log _{10} \sqrt{x}=2 \log _{x} 10$, then a possible value of x is given by
(a) 10
(b) $1 / 100$
(c) $1 / 1000$
(d) None of these

ANSWER : B

