

05 July 2024 Live Classes Schedule

8:00AM - 05 JULY 2024 DAILY CURRENT AFFAIRS RUBY MA'AM

9:00AM - 05 JULY 2024 DAILY DEFENCE UPDATES DIVYANSHU SIR

SSB INTERVIEW LIVE CLASSES

9:00AM OVERVIEW OF TAT & WAT ANURADHA MA'AM

NDA 2 2024 LIVE CLASSES

11:30AM GK - WORLD HISTORY - CLASS 1 RUBY MA'AM

1:00PM GS - PHYSICS - CLASS 5 NAVJYOTI SIR

2:30PM GS - CHEMISTRY MCQS - CLASS 10 SHIVANGI MA'AM

4:00PM MATHS - PROBABILITY - CLASS 1 NAVJYOTI SIR

5:30PM ENGLISH - PARTS OF SPEECH - CLASS 3 ANURADHA MA'AM

CDS 2 2024 LIVE CLASSES

11:30AM GK - WORLD HISTORY - CLASS 1 RUBY MA'AM

1:00PM GS - PHYSICS - CLASS 5 NAVJYOTI SIR

2:30PM GS - CHEMISTRY MCQS - CLASS 10 SHIVANGI MA'AM

5:30PM ENGLISH - PARTS OF SPEECH - CLASS 3 ANURADHA MA'AM

EXAM

RANDOM EXPERIMENT

 An Experiment: is some procedure (or process) that we do and it results in an outcome.

A random experiment: is an experiment we do not know its exact outcome in advance but we know the set of all possible outcomes.

EXAMPLES: Toss a coin: Sample space= {T, H}

- 2. Roll a die, observe the score on top. Sample space = {1, 2, 3, 4, 5, 6,}.
- 3. Throw a basketball, record the number of attempts to the first basket. Sample space = {1, 2, 3, 4, ...}.

SAMPLE SPACE

A sample space is the set of all possible outcomes in an experiment.

Example:

Two coins are tossed. Represent the sample space for this experiment by making a list, a table, and a tree diagram.

(H – Head, T – Tail)

S - Sample space n(s)Set of possible outcomes

The sample space is {HH, HT, TH, TT}

PROBABILITY

Probability of occurrence of an event A,

$$P(A) = \frac{No. \text{ of outcomes in farour of } A}{\text{Total no. of possible outcomes}} = \frac{n(A)}{n(S)} = \frac{o \leq P(A) \leq 1}{n(S)}$$

Find occurring of A).

$$P(A) = \frac{1}{2} = \frac{1}{2}$$

EQUAL LIKELY EVENTS

Two or more events (or sample points) are equally likely, if none of them is biased over the other. Suppose a number is picked from numbers 1 to 20, then events defined as

A: Picked number is even and B: Picked number is odd, are equally likely as in given numbers there are 10 odd numbers and 10 even numbers.

MUTUALLY EXCLUSIVE EVENTS

A, B are events,

if
$$A \cap B = \emptyset \Rightarrow A, B$$
 are mutually exclusive.

EXHAUSTIVE EVENTS

A: number greater than 3

B: number / or 2 or 3,

COMPLEMENT OF EVENT

The complement of an event A denoted by \overline{A} , A' or A^c is the set of all sample points of the space other than the sample points in A.

e.g., Let
$$S = \{1, 2, 3, 4, 5, 6\}$$
.
If $A = \{1, 3, 5, 6\}$,
then $A^c = \{2, 4\}$ A^c , A

INDEPENDENT EVENTS

Two events A and B are independent events, if the happening (or non-happening) of any does not affect the happening (or non-happening) of other. For example an urn contains 4 red and 5 green balls. A is an 1st event that one green ball is drawn. B is 2nd event that a red ball is drawn.

EXAMPLE

An ordinary dice is thrown. The probability that the number appearing on the dice greater than 3 is

(a) $\frac{1}{5}$

(b) $\frac{1}{3}$

(c) $\frac{1}{2}$

(d) $\frac{1}{4}$

EXAMPLE

An ordinary dice is thrown. The probability that the number appearing on the dice greater than 3 is

(a) $\frac{1}{5}$

(b) $\frac{1}{3}$

(c) $\frac{1}{2}$

(d) $\frac{1}{4}$

$$A = \{4,5,6\} \qquad n(A) = 3$$

$$S = \{1,2,3,4,5,6\} \qquad n(S) = 6$$

$$P(A) = \frac{3}{6} = \frac{1}{3}$$

Ans: (c)

VENN DIAGRAM: TYPE 1

We have only two events
$$A$$
 and B

1. $P(A \cup B) = P(A) + P(B) - P(AB)$

(Addition theorem for two events)

(A \(A \) B

(A \) B

$$A \cup B$$
 (Shaded portion)

2.
$$P(A^{c}B^{c}) = 1 - P(A \cup B)$$

3. $P(A^{c}B) = P(B) - P(AB)$

$$(De-Morgan $\lambda \omega - A' \cap B' = (A \cup B)' = S - (A \cup B)$

$$= 1 - P(A \cup B)$$$$

(Probability of occurrence of exactly B event)

4.
$$P(AB^c) = P(A) - P(AB)$$

(Probability of occurrence of exactly A event)

NDA 2 2024 LIVE CLASS - MATHS - PART 1

$$P(A' \cap B) = P(B - (A \cap B)) = P(B) - P(A \cap B)$$

$$B - (B \cap A)$$

B-(ANB)

$$B - (A \cap B)$$

$$P(A \cap B') = P(A - (A \cap B)) = P(A) - P(A \cap B)$$

VENN DIAGRAM: TYPE 2

When we have three events A, B and C

VENN DIAGRAM: TYPE 2

- 1. $P(A \cup B \cup C) = P(A) + P(B) + P(C)$ P(AB) P(BC) P(CA) + P(ABC)(Addition theorem for three events)
- **2.** If A, B and C are mutually exclusive events, then $P(A \cup B \cup C) = P(A) + P(B) + P(C)$
- **3.** If A, B and C are mutually exclusive and exhaustive events, then P(A) + P(B) + P(C) = 1.

EXAMPLE

Let A and B be the two possible outcomes of an experiment and P(A) = 0.4, P(B) = x and $P(A \cup B) = 0.7$. What is value of x, the events A and B are mutually exclusive?

- (a) 0.3
 - (c) 0.5

- (b) 0.2
- (d) 0.7

$$P(AUB) = P(A) + P(B) - P(ADB)$$

$$0.7 = 0.4 + 2$$

$$2 = 0.4 - 0.4 = 0.3$$

$$\chi = 0.7 - 0.9 = 0.3$$

EXAMPLE

Let *A* and *B* be the two possible outcomes of an experiment and P(A) = 0.4, P(B) = x and $P(A \cup B) = 0.7$. What is value of *x*, the events *A* and *B* are mutually exclusive?

(a) 0.3

(b) 0.2

(c) 0.5

(d) 0.7

Ans: (a)

Directions

Consider A and B are

two non-mutually exclusive events.

If
$$P(A) = \frac{1}{4}$$
, $P(B) = \frac{2}{5}$ and $P(A \cup B) = \frac{1}{2}$,

Q) The value of $P(A \cap B)$ is

(a)
$$\frac{4}{13}$$

$$\sqrt{3}$$
 (b) $\frac{3}{20}$

(c)
$$\frac{3}{43}$$

(d) None of these

$$P(A) + P(B) - P(AOB) = P(AUB)$$

$$\frac{1}{4} + \frac{2}{5} - 2 = \frac{1}{2}$$

$$2 = \frac{13}{20} - \frac{1}{2} = \frac{13 - 10}{20} = \frac{3}{20}$$

Q)The value of $P(A \cap B)$ is

(a)
$$\frac{4}{13}$$

(b)
$$\frac{3}{20}$$

(c)
$$\frac{3}{43}$$

Q) The value of $P(A \cap B')$ is

(a) $\frac{1}{10}$

(b) $\frac{2}{13}$

(c) $\frac{1}{5}$

(d) None of these

$$P(A) - P(A \cap B) = \frac{1}{4} - \frac{3}{20} = \frac{5-3}{20} = \frac{2}{20} = \frac{1}{10}$$

Q) The value of $P(A \cap B')$ is

(a) $\frac{1}{10}$

(b) $\frac{2}{13}$

(c) $\frac{1}{5}$

(d) None of these

Ans: (a)

Q) The value of $P(A' \cap B')$ is

(a)
$$\frac{1}{3}$$

(b)
$$\frac{1}{2}$$

(c)
$$\frac{1}{5}$$

$$/-P(AUB)$$

$$I - P(AUB)$$

$$I - \frac{1}{2} = \frac{1}{2}$$

Q) The value of $P(A' \cap B')$ is

(a) $\frac{1}{3}$

(b) $\frac{1}{2}$

(c) $\frac{1}{5}$

(d) None of these

Ans: (b)

CONDITIONAL PROBABILITY

The probability that one event happens given that another event is already known to have happened is called a **conditional probability.** Suppose we know that event A has happened. Then the probability that event B happens given that event A has happened is denoted by P(B, |A).

Pie

Read | as "given that" or "under the condition that"

A: an even number $\longrightarrow A = \{2, 4, 6\}$ B: a number multiple of 3 $B = \{3, 6\}$ $P(B|A) = \frac{1}{3}$

} (B & sample

Space

=

Parounable outcom

of A)

CONDITIONAL PROBABILITY

In order to calculate conditional probability:

- 1 Identify the number of desired outcomes under the condition.
- 2 Identify the total number of outcomes under the condition.

$$P(B|A) = \frac{P(B \cap A)}{P(A)} = \frac{P(A \cap B)}{P(A)}, \quad P(A) > 0$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{n(A \cap B)}{n(s)} = \frac{n(A \cap B)}{n(A)} = \frac{n(A \cap B)}{n$$

$$B: \{3,6\}$$

MULTIPLICATION RULE

$$P(A|B) = P(A)$$

$$P(A \cap B)$$

$$P(A) = P(A|B) \times P(A \cap B)$$

BAYE'S THEOREM

Let $A_1, A_2, A_3, ..., A_n$ be certain events which are mutually exclusive in pairs and which are exhaustive. Let A be an event which occurs with A_1 , also with A_2 , also with $A_3,...$, also with A_n . Then, Baye's theorem states that

$$P\left(\frac{A_k}{A}\right) = \frac{P(A_k)P\left(\frac{A}{A_k}\right)}{P(A_1)P\left(\frac{A}{A_1}\right) + P(A_2)P\left(\frac{A}{A_2}\right) + \dots + P(A_n)P\left(\frac{A}{A_n}\right)}$$

EXAMPLE

D: screw is défective.

The chances of defective screws in three boxes

A, B and C are $\frac{1}{5}$, $\frac{1}{6}$ and $\frac{1}{7}$, respectively. A box is selected at

random and a screw drawn from it at random is found to be defective. Find the probability that it came from box A is

(a)
$$\frac{42}{107}$$

(b)
$$\frac{41}{141}$$

(c)
$$\frac{42}{243}$$

(b)
$$\frac{41}{141}$$
 (c) $\frac{42}{243}$ (d) None of these

$$P(D/A) = \frac{1}{5}$$

$$P(D/B) = \frac{1}{6}$$

$$P(D/c) = \frac{1}{7}$$

$$P(A/D) = P(A)P(D/A)$$

$$\overline{P(A)P(D/A) + P(B)P(D/B) + P(C)P(D/C)}$$

$$P(A) = \frac{1}{3} = P(B) = P(C)$$

NDA 2 2024 LIVE CLASS - MATHS - PART 1

$$P(A|D) = \frac{\frac{1}{3} \times \frac{1}{5}}{3}$$

$$\frac{1}{3}x\frac{1}{5}+\frac{1}{3}x\frac{1}{6}+\frac{1}{3}x\frac{1}{7}$$

$$=\frac{1}{15}\sqrt{\frac{1}{15}+\frac{1}{18}+\frac{1}{21}}$$

$$\frac{1}{5}$$

$$42 + 35 + 30$$

$$210$$

$$= \frac{1}{8} \times \frac{210}{107}$$

$$=\frac{42}{107}$$

EXAMPLE

The chances of defective screws in three boxes

A, B and C are
$$\frac{1}{5}$$
, $\frac{1}{6}$ and $\frac{1}{7}$, respectively. A box is selected at

random and a screw drawn from it at random is found to be defective. Find the probability that it came from box A is

(a)
$$\frac{42}{107}$$

(b)
$$\frac{41}{141}$$

(c)
$$\frac{42}{243}$$

(a) $\frac{42}{107}$ (b) $\frac{41}{141}$ (c) $\frac{42}{243}$ (d) None of these

Ans: (a)

