NDA-CDS 2 2024

01 July 2024 Live Classes Schedule

8:00AM - 01 JULY 2024 DAILY CURRENT AFFAIRS RUBY MA'AM

9:00AM - 01 JULY 2024 DAILY DEFENCE UPDATES DIVYANSHU SIR

SSB INTERVIEW LIVE CLASSES

9:00AM -- ONLINE COURSE INTRODUCTION ANURADHA MA'AM

NDA 2 2024 LIVE CLASSES

11:30AM GK - MODERN HISTORY - CLASS 3 RUBY MA'AM

1:00PM -- GS - PHYSICS - CLASS 1 NAVJYOTI SIR

2:30PM -- GS - CHEMISTRY MCQS - CLASS 6 SHIVANGI MA'AM

4:00PM — (MATHS - INDEFINITE & DEFINITE INTEGRATION - CLASS 3 NAVJYOTI SIR

5:30PM -- (ENGLISH - ORDERING OF SENTENCES - CLASS 1 ANURADHA MA'AM

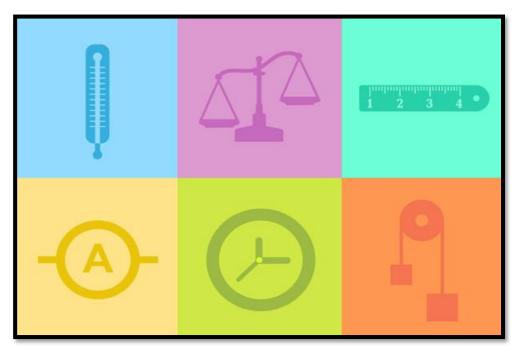
CDS 2 2024 LIVE CLASSES

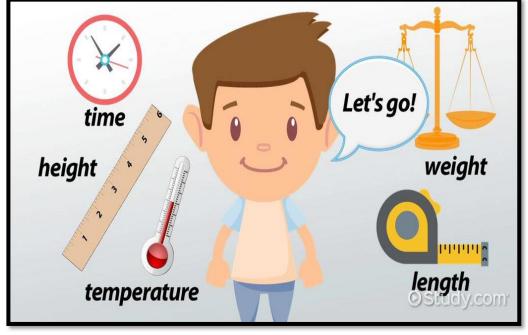
11:30AM GK - MODERN HISTORY - CLASS 3 RUBY MA'AM

1:00PM GS - PHYSICS - CLASS 1 NAVJYOTI SIR

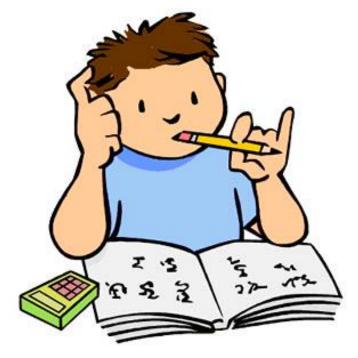
2:30PM GS - CHEMISTRY MCQS - CLASS 6 SHIVANGI MA'AM

5:30PM ENGLISH - ORDERING OF SENTENCES - CLASS 1 ANURADHA MA'AM



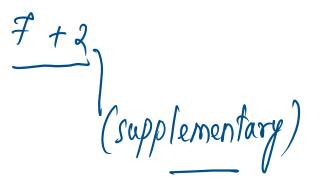


UNITS AND MEASUREMENT



WHAT WILL WE STUDY?

- Fundamental Quantities
- Derived Quantities
- Units
- Systems of Units
- Precision and Accuracy



Fundamental Quantities

Those physical quantities which do not depend on other quantities.

- 1. Mass ✓
- 2. Length 🗸
- 3. Time, ✓
- 4. Temperature,✓
- 5. Electric current ✓
- 6. Amount of substance.
- 7. Luminous Intensity 🗸
- Plane angle and Solid angle are two supplementary Fundamental Quantities.

Fundamental Units

- 1. Mass Kilogram (kg)
- 2. Length metre (m)
- 3. Time, Seconds(s)
- Temperature, $\frac{Ke/vin}{(k)}$ $\begin{pmatrix} \circ c + 273 \\ k \end{pmatrix}$ $\begin{pmatrix} \circ c = 273 \\ k \end{pmatrix}$
- **Electric current**

Electric current

(k)

Ampere (A)

Amount of substance.

$$mo/e$$
 $(mo/)$ -6.023×10^{23} particles

Luminous Intensity

Dimensions

- (i) Mass ____ [M]
- (2) Length ____[]
- (3) 7ime ____ [7]
- (4) Temperature ___ [K]
- (5) Electric current [A]
- 6 Amount of substance [mol]

Derived Quantities

The physical quantities which depend on fundamental quantities.

Example - Speed, Force, Voltage, Density etc.

Force = Mass x accln.
$$= \left[M \right] \times \left[\frac{LT^{-1}}{T} \right]$$

$$= \left[ML T^{-2} \right]$$

Vo Hage = Work done =
$$\frac{\omega}{9} = \frac{(ML^2T^{-2})}{(AT)}$$

Work = force x displacement = $[ML^2T^{-3}A^{-1}] - kg m^2s^{-3}A^{-1}$
= $[MLT^{-2}] \times [L]$
= $[ML^2T^{-2}]$ (Dimensions of work)
= $kg m^2s^{-2}$ Jrule
Quantity of charge = 9 = current x time
= $[A][T] \sim As$ coulombs

Density =
$$\frac{Mass}{Volume}$$
 = $\frac{[M]}{[L^3]}$ = $\frac{[M]^{-3}}{[Kgm^{-3}]}$

UNITS

- A Standard Amount of a Physical Quantity Chosen to Measure the Physical Quantity of The Same Kind.
- It Should Be Easily Reproducible, Internationally Accepted.

Derived Units

1. Speed

2. Momentum $-p = mass \times velocity$ 3. Voltage $\begin{bmatrix} MLT^{-1}L & kgms^{-1} \end{bmatrix}$

4. Density, etc.

SYSTEM OF UNITS

- 1. CGS
- MASS gram

TIME

- 2. FPS foot pounds

seconds

- 3. MKS <u>metre</u> <u>kilogram</u>
- seconds

metre kilogram seconds

PRACTICAL UNITS

• Length:

- (i) $1 \text{ fermi} = 10^{-15} \text{ m}$
- (ii) 1 X-ray unit = 10^{-13} m
- (iii) 1 astronomical unit = 1.49×10^{11} m (average distance between 1 AU sun and earth)
- (iv) 1 light year = 9.46×10^{15} m (distance travelled by light in (v) 1 parsec = 3.08×10^{16} m = 3.26 light year

PRACTICAL UNITS

Mass / Weight :

```
1 quintal = 10^2 kg — 100^{1000} kg

1 metric ton = 10^3 kg

1 atomic mass unit (amu) or

dalton = 1.66 \times 10^{-27} kg

1 pound = 0.4537 kg
```

PRACTICAL UNITS

SSBCrack EXAMS

• Time:

1 solar day = 86400 sec.

1 year = 365½ solar days

1 lunar month

= 27.3 solar days

Tropical year = It is the year
in which total solar eclipse
occurs.

Leap year = It is the year in
which the month of February
is of 29 days.

24 x 60 x 60 S

366 days

PREFIXES USED

(Metric	, —	51)

Prefix	Symbol	Multiplier
deci	d	10-1
centi	С	10-2
milli	m	10-3
micro	m	10-6
nano	n	10-9
pico	p	10-12

deca	da	10¹
hecto	h	10 ²
kilo	k	10 ³
mega	M	106

CONVERSIONS BETWEEN UNITS

- Measurement Of Physical Quanity = Numerical Value (Number) × Unit
- If u₁ And u₂ Are The Units Of A Physical Quantity In Two Different System Of Units And, n₁ And n₂ Are Their Numerical Values Then,

$$\frac{1}{(4)(2n)} = \frac{9}{2} \text{ m}$$

$$\chi = \frac{0.2 \times 9 \times \text{cm}^{-3}}{\text{kg m}^{-3}}$$

$$\chi = \frac{14 \times \text{cm}}{\text{m}} = \frac{14 \times 1 \text{cm}}{100 \text{cm}} = \frac{0.14 \text{ m}}{\text{cm}^{3}}$$

$$0.2 \text{ g cm}^{-3} = \frac{? \text{ kg m}^{-3}}{2 \text{ cm}^{-3}}$$

$$2 = 0.2 \times \text{g x cm}^{-3}$$

$$= 0.2 \times \text{g x } \frac{\text{m}^{-3}}{\text{cm}^{-3}}$$

$$= 8.2 \times \text{g x } \frac{\text{m}^{-3}}{\text{cm}^{-3}}$$

$$(0.2)$$
 $g cm^{-3} = \frac{7}{0.0} kg m^{-3}$

$$x = \frac{0.2 \text{ g cm}^{-3}}{\text{kg m}^{-3}} = \frac{0.2 \text{ g}}{1000 \text{ g}} \times \left(\frac{\text{m}}{\text{cm}}\right)^3$$

$${gcm^{-3} = 1000 kgm^{-3}}$$

$$= 0.2 \times 100 \text{ cm}^3$$

$$= \frac{0.2 \times 10^6}{10^3} \times 10^6 = \frac{0.2 \times 10^3}{200 \text{ kgm}^{-3}}$$

PRECISION AND ACCURACY

- The <u>Accuracy</u> Of A Measurement System Is The Degree Of Closeness Of Measurements Of A Quantity To That Quantity's True Value.
- The <u>Precision</u> Of A Measurement System, Is The Degree To Which Repeated
 Measurements Under Unchanged Conditions Show The Same Results .
- <u>Least Count</u> of Instruments Minimum length that can be measured.

SUMMARY

- Fundamental Quantities And Units
- Derived Quantities And Units
- Practical Units
- Prefixes And Conversions
- Precision , Accuracy And Least Count

1. Which Of The Following Is The Fundamental Unit Of Thermodynamic Temperature ?

A. K

B. ° C

C. ° F

D. None of the Above

1. Which Of The Following Is The Fundamental Unit Of Thermodynamic Temperature ?

- A. K
- B. °C
- C. °F
- D. None of the Above

2. The Symbol To Represent Amount Of Substance Is

- A. K
- B. A
- C. Cd
- D. mol

2. The Symbol To Represent Amount Of Substance Is

- A. K
- B. A
- C. Cd
- D. mol

3. The Smallest Value Which Is Measured Using An Instrunment Is Known As

- A. Absolute Count
- B. Precision
- C. Accurate Count
- D. Least Count

3. The Smallest Value Which Is Measured Using An Instrunment Is Known As

- A. Absolute Count
- B. Precision
- C. Accurate Count
- **D.** Least Count

4. Which of the following is not a Physical Quantity?

- A. Density
- B. Momentum
- C. Work
- Ø. Kilogram

- 4. Which of the following is not a Physical Quantity?
- A. Density
- B. Momentum
- C. Work
- D. Kilogram

5. Which among the following is a Supplementary Fundamental Unit?

- A. Ampere
- B. Second
- C. Kilogram
- D. Radian

5. Which among the following is a Supplementary Fundamental Unit?

- A. Ampere
- B. Second
- C. Kilogram
- D. Radian

6. Which Of The Following Is A System Of Unit?

- A. SMS <
- B. MKP <
- C. CJS «
- Ø. FPS

System of units CGS

FPS

MK3

6. Which Of The Following Is A System Of Unit?

- A. SMS
- B. MKP
- C. CJS
- D. FPS

7. The SI unit of Work is

A. Joules Work

B. (ergs)

C. volt

D. Ampere

current

 $= \frac{(45)^{2}}{(45)^{2}} = \frac{$

NDA & CDS 1 2024 PHYSICS - PART 1

7. The SI unit of Work is

A. Joules

- B. ergs
- C. volt
- D. Ampere

NDA & CDS 2 2024 PHYSICS - PART 1

8. Work is said to be 1 J when a force of

- A. 1 N moves an object by 1 cm. K
- B. 2 N moves an object by 1 m.

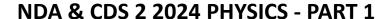
4 N moves an object by 25 cm.

1 N moves an object by 50 cm

$$\frac{W}{N} = Fore \times \frac{disp}{N} = I \times I$$

$$\frac{W}{N} \times \left(\frac{dS}{ND}\right) = I \times I$$

$$\frac{W}{N} \times \left(\frac{SO}{ND}\right) = I \times I$$


$$INX \left(\frac{1}{100}\right)^{M} = 0.01 JX$$

$$2NXIM = 2JX$$

$$4NX\left(\frac{2S}{100}\right)^{M} = 4NX \frac{1}{4}M$$

$$= IJ$$

$$X\left(\frac{50}{100}\right)^{M} = \frac{1}{2}J = 0.5 P$$

8. Work is said to be 1 J when a force of

- A. 1 N moves an object by 1 cm.
- B. 2 N moves an object by 1 m.
- C. 4 N moves an object by 25 cm.
- D. 1 N moves an object by 50 cm

9. Which of the following is not a unit of time?

- A. Solar Day
- B. Leap Year
- C. Lunar Month
- D. Parallactic Second

- 9. Which of the following is not a unit of time?
- A. Solar Day
- B. Leap Year
- C. Lunar Month
- **D.** Parallactic Second

NDA & CDS 1 2024 LIVE CLASS - PHYSICS

10. One pico Farad is equal to

- A. 10⁻²⁴ Farad
- B. 10⁻¹² Farad
- C. 10⁻¹⁸ Farad
- D. 10 ⁻⁶ Farad

10. One pico Farad is equal to

- A. 10⁻²⁴ Farad
- B. 10⁻¹² Farad
- C. 10⁻¹⁸ Farad
- D. 10⁻⁶ Farad

11. What is the unit of Force / Energy?

- A. second
- B. m^{-1}
- C. Kg
- D. M²

11. What is the unit of Force / Energy?

- A. second
- B. m⁻¹
- C. Kg
- D. m^2

12. The Smallest Unit Of Length Is

- A. Micrometre
- B. Angstrom
- C. Nanometre
- D. Fermimetre

12. The Smallest Unit Of Length Is

- A. Micrometre
- B. Angstrom
- C. Nanometre
- D. Fermimetre

13. Dimensions Of Kinetic Energy Is The Same As

- A. Acceleration
- B. Velocity
- C. Work
- D. Force

13. Dimensions Of Kinetic Energy Is The Same As

- A. Acceleration
- B. Velocity
- C. Work
- D. Force

14. Unit Of Specific Resistance Is

- A. ohm-m²
- B. ohm-m³
- C. ohm/m
- D. ohm-m

14. Unit Of Specific Resistance Is

- A. ohm-m²
- B. ohm-m³
- C. ohm/m
- D. ohm-m

15. What Is The Unit Of Luminous Intensity?

- A. mol
- B. kg
- C. Cd
- D. m

15. What Is The Unit Of Luminous Intensity?

- A. mol
- B. kg
- C. Cd
- D. m

16. Select the pair having the same dimensions,

- A. Kinetic Energy and Surface Tension
- B. Torque and Potential Energy
- C. Momentum and Force
- D. Pressure and Energy / Time

•

16. Select the pair having the same dimensions,

- A. Kinetic Energy and Surface Tension
- **B.** Torque and Potential Energy
- C. Momentum and Force
- D. Pressure and Energy / Time

17. What Is The Unit Of Force In CGS Units?

- A. $kg ms^{-2}$
- B. g ms⁻²
- C. g cms⁻²
- D. None of the Above

17. What Is The Unit Of Force In CGS Units?

- A. $kg ms^{-2}$
- B. $g ms^{-2}$
- C. g cms⁻²
- D. None of the Above

18. The Density Of A Cubic Material Is SI Units Is 128 Kgm⁻³. In Certain Units, The Edge Length Is 25 cm And Mass Is 50 g, Then The Numerical Value Of The Density Of Material In This System Of Units Is

- A. 40
- B. 640
- C. 16
- D. 410

18. The Density Of A Cubic Material Is SI Units Is 128 Kgm⁻³. In Certain Units, The Edge Length Is 25 cm And Mass Is 50 g, Then The Numerical Value Of The Density Of Material In This System Of Units Is

- A. 40
- B. 640
- C. 16
- D. 410

19. Electron Volt is the unit of

- A. Luminosity
- B. Force
- C. Frequency
- D. Energy

19. Electron Volt is the unit of

- A. Luminosity
- B. Force
- C. Frequency
- D. Energy

- 20. Light year is a unit for measurement of
 - (a) age of universe
 - (b) very small time intervals
 - (c) very high temperature
 - (d) very large distance

20. Light year is a unit for measurement of Answer: (D)

- (a) age of universe
- (b) very small time intervals
- (c) very high temperature
- (d) very large distance

- 21. The unit of the ratio between thrust and impulse is same as that of
 - (a) frequency
 - (b) speed
 - (c) wavelength
 - (d) acceleration

Answer: (A)

- 21. The unit of the ratio between thrust and impulse is same as that of
 - (a) frequency
 - (b) speed
 - (c) wavelength
 - (d) acceleration

NDA-CDS 2 2024

SSBCrack

NAVJYOTI SIR

SSBCrack EXAMS