

LIVE (

REVISION

CLASS 1

ISSBCrack

NAVJYOTI SIR

REVISION TOPICS :

Units and MeasurementRotational Motion

Which of the following is a fundamental quantity?

- (a) Velocity
- (b) Force
- (c) Mass
- (d) Acceleration

Which of the following is a fundamental quantity?

- (a) Velocity
- (b) Force
- (c) Mass
- (d) Acceleration

Mass Length Temperature Time Luminous Intensity Amount of substance Electric current

2 supplementary plane angle Solid angle

Which Of The Following Is The Fundamental Unit Of Thermodynamic Temperature ?

A. K

B. °C

C. °F

D. None of the Above

Which Of The Following Is The Fundamental Unit Of Thermodynamic Temperature ?

- A. K ~ Kelvin
- B. °C
- C. °F
- D. None of the Above

The Symbol To Represent Amount Of Substance Is

A. K

- B. A
- C. Cd

D. mol

The Symbol To Represent Amount Of Substance Is

A. K

- B. A
- C. Cd

D. mol سمس

Amount of substance - mole (mol)

The Smallest Value Which Is Measured Using An Instrunment Is Known As

- A. Absolute Count
- B. Precision
- C. Accurate Count
- D. Least Count

The Smallest Value Which Is Measured Using An Instrunment Is Known As

- A. Absolute Count
- B. Precision
- C. Accurate Count
- **D. Least Count**

Which among the following is a Supplementary Fundamental Unit?

- A. Ampere
- B. Second
- C. Kilogram
- D. Radian

Which among the following is a Supplementary Fundamental Unit?

- A. Ampere
- B. Second
- C. Kilogram
- D. Radian

The SI unit of Work is

- A. Joules
- B. ergs
- C. volt
- D. Ampere

The SI unit of Work is

si unit A. Joules < B. ergs
C. volt
D. Ampere B. ergs cm; q; second $l ergs = lg m^2 s^{-2}$

Cgs unit of Force $1 dyne \equiv 1 g cm s^{-2}$

Which of the following is not a unit of time ?

- A. Solar Day
- B. Leap Year
- C. Lunar Month
- D. Parallactic Second

Which of the following is not a unit of time ?

- A. Solar Day
- B. Leap Year
- C. Lunar Month
- **D.** Parallactic Second

What is the unit of Force / Energy ?

A. second

What is the unit of Force / Energy ?

- A. second
- B. m⁻¹
- C. kg
- D. m²

Unit Of Specific Resistance Is

- A. ohm-m²
- B. ohm-m³
- C. ohm/m
- Ø. ohm-m

$$R = (P)l$$

$$Specific resistance / resistivit$$

$$P = \frac{RA}{l}$$

$$(bhm \times m^{2}) = 0hm - m$$

SSB

Unit Of Specific Resistance Is

- A. ohm-m²
- B. ohm-m³
- C. ohm/m
- D. ohm-m

What Is The Unit Of Luminous Intensity?

A. mol

B. kg

C. Cd

D. m

What Is The Unit Of Luminous Intensity?

A. mol

B. kg

C. Cd~

D. m

Candela ---- Unit of Luminous Intensity

Select the pair having the same dimensions,

- A. Kinetic Energy and Surface Tension
- B. Torque and Potential Energy
- C. Momentum and Force
- D. Pressure and Energy / Time

(A) surface tension =
$$\frac{F}{length}$$
 $W \rightarrow \frac{F \times disp}{Isp}$.
(B) $F \times \overline{r} = (Nm)$ $\int Pot.$ onergy $\equiv W \rightarrow F \times disp.$ (Nm).

unite

Same

Select the pair having the same dimensions,

- A. Kinetic Energy and Surface Tension
- **B. Torque and Potential Energy**
- C. Momentum and Force
- D. Pressure and Energy / Time

Electron Volt is the unit of

- A. Luminosity
- B. Force
- C. Frequency

Electron Volt is the unit of

- A. Luminosity
- B. Force
- C. Frequency
- **D.** Energy

Light year

Light year is a unit for measurement of

- (a) age of universe
- (b) very small time intervals
- (c) very high temperature
- (d) very large distance

(distance) travelled by light in 1 year

SSBCrack

Light year is a unit for measurement of

- (a) age of universe
- (b) very small time intervals
- (c) very high temperature
- (d) very large distance

Answer: (D)

The unit of the ratio between thrust and impulse is same as that of

- frequency (2)
- speed (b)
- wavelength (c)
- (d)

acceleration 2 mpulse - Force x time (f) Time period

Thrust — force in perpendicular direction (force) Unit of f = s - 1

 $\frac{111714ST}{2mpulse} = \frac{F}{F \times F} = \frac{1}{F} = \frac{1}{F} = \frac{1}{Second} = \frac{(S-1)}{Second}$

SSBCrack

The unit of the ratio between thrust and impulse is same as that of

.

- (a) frequency
- (b) speed
- (c) wavelength
- (d) acceleration

1.5

.

Answer: (A)

The SI unit of pressure is:

(a) Pascal

(b) Bar

(c) Torr

(d) Atmosphere

The SI unit of pressure is:

(a) Pascal

(b) Bar

(c) Torr

(d) Atmosphere

Precision refers to:

(a) The closeness of measurements to the true value Accuracy

(b) The smallest value that can be measured $\sim \sqrt{eas} / count$

(c) The degree of agreement among several measurements of the same quantity

(d) The difference between the measured value and the true value

Precision refers to:

- (a) The closeness of measurements to the true value
- (b) The smallest value that can be measured

(c) The degree of agreement among several measurements of the same quantity

(d) The difference between the measured value and the true value

Which of the following is not a common system of unit?

(a) CGS

(b) MKS

(c) FPS

(d) QRS

Which of the following is not a common system of unit?

(a) CGS

(b) MKS

(c) FPS

(d) QRS

The center of mass of a uniform rod lies:

- (a) At one end
- (b) At the center
- (c) At one-fourth the length from one end
- (d) At one-third the length from one end

at centre

The center of mass of a uniform rod lies:

- (a) At one end
- (b) At the center
- (c) At one-fourth the length from one end
- (d) At one-third the length from one end

```
for uniform mass distribution,
centre of mass is at the
geometrical centre.
```

Answer: (B)

The moment of inertia of a thin circular ring about its diameter is:

The moment of inertia of a thin circular ring about its diameter is:

(a) MR²

(b) $\frac{1}{2}$ MR² (c) $\frac{1}{4}$ MR²

(d) 2MR²

The torque on a particle of mass m moving in a circle of radius r with uniform

The torque on a particle of mass m moving in a circle of radius r with uniform

speed v is:

(a) 0

(b) mvr

(c) $\frac{mv^2}{r}$ (d) $\frac{mv}{r}$

Answer: (A)

In rolling motion without slipping, the relation between translational velocity v and angular velocity ω is:

(a) $v = \omega R$	$\theta = \frac{l}{r}$	
(b) $v = rac{\omega}{R}$		
(c) $v = rac{R}{\omega}$	$l = r \theta$	
(d) $v=\omega^2 R$	$\frac{dl}{=}$ rdo	
	(dt dt	
	linear relocity angular relocity.	

In rolling motion without slipping, the relation between translational velocity v and angular velocity ω is:

(a) $v = \omega R$ (b) $v = \frac{\omega}{R}$ (c) $v = \frac{R}{\omega}$ (d) $v = \omega^2 R$

Answer: (A)

A body in rotational motion possesses rotational kinetic energy given by

a. $KE=rac{1}{2}I^2\omega$ J. $KE=rac{1}{2}I\omega^2$ c. $KE=2I^2\omega$ d. $KE=I\omega$

_____.

A body in rotational motion possesses rotational kinetic energy given by

a. $KE=rac{1}{2}I^2\omega$ b. $KE=rac{1}{2}I\omega^2$ c. $KE=2I^2\omega$ d. $KE=I\omega$

_____.

Rotational kinetic energy of a solid cylinder rotating about its axis is:

(a) $\frac{1}{2}MR^2\omega^2$ (b) $\frac{1}{4}MR^2\omega^2$ (c) $\frac{1}{3}MR^2\omega^2$ (d) $\frac{1}{2}I\omega^2$

Rotational kinetic energy of a solid cylinder rotating about its axis is:

(a) $\frac{1}{2}MR^2\omega^2$ (b) $\frac{1}{4}MR^2\omega^2$ (c) $\frac{1}{3}MR^2\omega^2$ (d) $\frac{1}{2}I\omega^2$

SSE

A solid disc and a solid sphere have the same mass and same radius. Which one has the higher moment of inertia about its centre of mass?

- (a) The disc
- (b) The sphere
- (c) Both have the same moment of inertia
- (d) The information provided is not sufficient to answer the question

A solid disc and a solid sphere have the same mass and same radius. Which one has the higher moment of inertia about its centre of mass?

- (a) The disc
- (b) The sphere
- (c) Both have the same moment of inertia
- (d) The information provided is not sufficient to answer the question

Answer : D

A thin disc and a thin ring, both have mass M and radius R. Both rotate about axes through their center of mass and are perpendicular to their surfaces at the same angular velocity. Which of the following is true ?

- (a) The ring has higher kinetic energy
- (b) The disc has higher kinetic energy
- (c) The ring and the disc have the same kinetic energy
- (d) Kinetic energies of both the bodies are zero since they are not in linear motion

 $k = -1\omega^2$ moment of inertia Higher I > Higher kinefic energy (K) Iring = MR2 Idisc = I MRL

SSE

A thin disc and a thin ring, both have mass M and radius R. Both rotate about axes through their center of mass and are perpendicular to their surfaces at the same angular velocity. Which of the following is true ?

- (a) The ring has higher kinetic energy
- (b) The disc has higher kinetic energy
- (c) The ring and the disc have the same kinetic energy
- (d) Kinetic energies of both the bodies are zero since they are not in linear motion

Answer: A

For which of the following does the centre of mass lie outside the body?

- (a) A pencil
- (b) A shotput
- (c) A dice
- (d) A bangle

For which of the following does the centre of mass lie outside the body?

- (a) A pencil
- (b) A shotput
- (c) A dice
- (d) A bangle

When A Torque Acting On A System Is Zero, Then Which Of The Following

Should Not Change?

(a) Linear velocity

(b) Angular momentum

(c) Angular displacement

(d) Force acting on the body

When A Torque Acting On A System Is Zero, Then Which Of The Following

Should Not Change?

(a) Linear velocity

(b) Angular momentum

(c) Angular displacement

(d) Force acting on the body

Two rings have their moments of inertia in the ratio 2 : 1 and their diameters are in the ratio 2 : 1. The ratio of their masses will be

- (a) 2 : 1
- (b) 1:2
- (c) 1 : 4
- (d) 1 : 1

Two rings have their moments of inertia in the ratio 2 : 1 and their diameters are in the ratio 2 : 1. The ratio of their masses will be

- (a) 2 : 1
- (b) 1 : 2
- (c) 1 : 4
- (d) 1 : 1

Angular acceleration is produced in a body when a acts on it.

- A. Moment of Inertia
- B. Velocity
- C. Torque
- D. None of the Above

Angular acceleration is produced in a body when a acts on it.

- A. Moment of Inertia
- B. Velocity
- C. Torque
- D. None of the Above

Which of the following statements is correct?

The rotational energy of a body with a given angular speed depends on its

(a) mass only

(b) material only

(c) size only

(d) mass as well as the distribution of its mass about the axis of rotation.

Which of the following statements is correct?

The rotational energy of a body with a given angular speed depends on its

(a) mass only

(b) material only

(c) size only

(d) mass as well as the distribution of its mass about the axis of rotation.

The combination of rotational motion and the translational motion of a rigid

body is known as ______.

- A. Frictional motion
- B. Axis motion
- C. Angular motion
- D. Rolling motion

The combination of rotational motion and the translational motion of a rigid

body is known as _____.

- A. Frictional motion
- B. Axis motion
- C. Angular motion
- D. Rolling motion

Moment of inertia, of a spinning body about an axis, doesn't depend on which

of the following factors?

- a) Distribution of mass around axis
- b) Orientation of axis
- c) Mass
- d) Angular velocity

Moment of inertia, of a spinning body about an axis, doesn't depend on which

of the following factors?

- a) Distribution of mass around axis
- b) Orientation of axis
- c) Mass
- d) Angular velocity

LIVE (

REVISION

CLASS 2

ISSBCrack

NAVJYOTI SIR

Reflection of Light Refraction of Light