NDA-CDS 2 2024

55

rack

8:00AM 12 AUGUST 2024 DAILY CURRENT AFFAIRS RUBY MA'AM
9:00AM 12 AUGUST 2024 DAILY DEFENCE UPDATES DIVYANSHU SIR

SSB INTERVIEW LIVE CLASSES

9:00AM OVERVIEW OF PIQ & PI ANURADHA MA'AM

NDA 2 2024 LIVE CLASSES

11:00AM GK - POLITY REVISION - CLASS 3 RUBY MA'AM

12:COPM PHYSICS REVISION - CLASS 6 NAVJYOTI SIR

1:00PM MATHS REVISION - CLASS 6 NAVJYOTI SIR

2:00PM BIOLOGY REVISION - CLASS 6 SHIVANGI MA'AM

5:30PM ENGLISH - MATCHING LIST - CLASS 2 ANURADHA MA'AM

CDS 2 2024 LIVE CLASSES

11:00AM GK - POLITY REVISION - CLASS 2 RUBY MA'AM

12:00PM PHYSICS REVISION - CLASS 5 NAVJYOTI SIR

2:00PM BIOLOGY REVISION - CLASS 5 SHIVANGI MA'AM

3:00PM MATHS REVISION - CLASS 5 NAVJYOTI SIR

5:30PM ENGLISH - MATCHING LIST - CLASS 2 ANURADHA MA'AM

TODAY'S REVISION TOPICS:

- Electricity
- Magnetism

Which one of the following is primarily responsible for conduction of current in a metal?

- (a) Bound electrons
- (b) Free electrons
- (c) Both bound and free electrons
- (d) Ions

Which one of the following is primarily responsible for conduction of current in a metal?

- (a) Bound electrons
- (b) Free electrons
- (c) Both bound and free electrons
- (d) Ions

ANS: B

An infinite combination of resistors, having resistance $R=4\,\Omega$, is given below. What is the net resistance between the points A and B? (Each resistance is of equal value,

An infinite combination of resistors, having resistance $R=4\,\Omega$, is given below. What is the net resistance between the points A and B? (Each resistance is of equal value, R=4)

- (a) 0 Ω
- (b) $2+2\sqrt{5} \Omega$
- (c) $2+\sqrt{5} \Omega$
- (d) $\infty \Omega$

Answer: (C)

Consider the following electric circuit:

The current in the above electric circuit is:

- (b) (10/15) A
- (c) 2 A
- (d) 1.5 A

Consider the following electric circuit:

The current in the above electric circuit is:

- (a) 1 A
- (b) (10/15) A
- (c) 2 A
- (d) 1.5 A

Answer: (A)

Answer: (C)

The cost of energy to operate an industrial refrigerator that consumes 5 kW power working 10 hours per day for 30 days will be (Given that the charge per kW.h of energy = ₹ 4)

$$Prwer = 5 kW$$

The cost of energy to operate an industrial refrigerator that consumes 5 kW power working 10 hours per day for 30 days will be (Given that the charge per kW.h of energy = ₹ 4)

- (a) ₹ 600
- (b) ₹ 6,000
- (c) ₹ 1,200
- (d) ₹ 1,500

Answer: (B)

Consider the following part of an electric

The total electrical resistance in the given part of the electric circuit is

(a)
$$\frac{15}{8}$$
 ohm

(b)
$$\frac{15}{7}$$
 ohm

- (c) 15 ohm
- (d) $\frac{17}{3}$ ohm

$$R = \frac{8}{7} \Omega$$

$$\frac{\partial}{\partial x} \Delta + 1 \Delta = \frac{15}{3} \Delta$$

Consider the following part of an electric circuit:

The total electrical resistance in the given part of the electric circuit is

- (a) $\frac{15}{8}$ ohm
- (b) $\frac{15}{7}$ ohm
- (c) 15 ohm
- (d) $\frac{17}{3}$ ohm

Answer: (B)

Consider the following circuit :

Which one of the following is the value of the resistance between points A and B in the circuit given above?

(a)
$$\frac{2}{5}R$$

$$46) \frac{3}{5}R$$

(c)
$$\frac{3}{2}R$$

for 2 resistors in parallel, equivalent resistance =
$$\frac{R_1R_2}{R_1 + R_2} = \frac{3R_1R_2}{3R/2} + \frac{3R_1R_2}{5}$$

Consider the following circuit:

Which one of the following is the value of the resistance between points A and B in the circuit given above?

- (a) $\frac{2}{5}R$
- (b) $\frac{3}{5}R$
- (c) $\frac{3}{2}R$
- (d) 4R

Answer: (B)

Which one of the following is the value of 1 kWh of energy converted into joules?

(a)
$$1.8 \times 10^6 \,\text{J}$$

(b)
$$3.6 \times 10^6 \,\text{J}$$

(c)
$$6.0 \times 10^6 \,\mathrm{J}$$

(d)
$$7.2 \times 10^6 \,\text{J}$$

(c)
$$6.0 \times 10^6 \text{ J}$$

(d) $7.2 \times 10^6 \text{ J}$ = $/ \text{kw} \times / \text{h}$

Which one of the following is the value of 1 kWh of energy converted into joules?

Answer: (B)

- (a) $1.8 \times 10^6 \,\text{J}$
- (b) $3.6 \times 10^6 \,\text{J}$
- (c) $6.0 \times 10^6 \,\mathrm{J}$
- (d) $7.2 \times 10^6 \,\mathrm{J}$

Which one of the following devices is non-ohmic?

- (a) Conducting copper coil
 - (b) Electric heating coil
 - (c) Semi conductor diode
 - (d) Rheostat

Which one of the following devices is non-ohmic?

Answer: (C)

- (a) Conducting copper coil
 - (b) Electric heating coil
 - (c) Semi conductor diode
 - (d) Rheostat

Which one of the following can charge an insulator?

- (a) Current electricity
- (b) Static electricity
- (c) Magnetic field
- (d) Gravitational field

Which one of the following can charge an insulator?

Answer: (B)

- (a) Current electricity
- (b) Static electricity
- (c) Magnetic field
- (d) Gravitational field

A current of 1.0 A is drawn by a filament of an electric bulb for 10 minutes. The amount of electric charge that flows through the circuit is

- (a) 0·1 C
- (b) 10 C
- (c) 600 C
- (d) 800 C

A current of 1.0 A is drawn by a filament of an electric bulb for 10 minutes. The amount of electric charge that flows through the circuit is

- (a) 0·1 C
- (b) 10 C
- (c) 600 C
- (d) 800 C

Answer: (C)

Which one of the following correctly represents the SI unit of resistivity?

- (a) Ω
- (b) Ω/m
- Ω cm (c)

R = fl area of cross section

resistivity

$$P = RA - X m^2 = 1 - m$$

Which one of the following correctly represents the SI unit of resistivity?

- (a) Ω
- (b) Ω/m
- (c) Ω cm
- (d) Ω m

Answer: (D)

•

Which one of the following formulas does not represent electrical power?

(b)
$$IR^2$$
 $P = pot. diff x current$

$$= (IR)/ = I^2R$$

$$= V\left(\frac{V}{R}\right) = \frac{V^2}{R}$$

Prwer —
$$VI$$
 $\left\{ \frac{2^2R}{R} \right\}$

Which one of the following formulas does *not* represent electrical power?

- (a) $I^2 R$
- (b) I R²
- (c) V I
- (d) V^2/R

Answer: (B)

Va

internal ruistana)

An electric circuit is given below. $V_1 = 1 \text{ V}$ and Resistance $R = 1000 \Omega$.

The current through the resistance R is very close to 1 mA and the voltage across point A and B, $V_{AB} = 1$ V. Now the circuit is changed to:

where value of $V_2=5\,V$. The internal resistances of both the batteries are $0.1\,\Omega$. The current through the resistance R is about:

- (a) 1.0 mA
- (b) 1·2 mA
- (c) 3.0 mA
- (d) 5.0 mA

$$\left(\frac{V_1}{\sigma_1} + \left(\frac{V_2}{\tau_2}\right)\right) = \frac{1}{0.1} + \frac{5}{0.1} = \frac{6}{3}$$

$$\left(\frac{1}{\tau_1} + \left(\frac{1}{\tau_2}\right)\right) = \frac{3}{0.1} + \frac{1}{0.1} = \frac{3}{3}$$

$$2 = \frac{V}{1000-2} = \frac{3}{1000-2} = 3.0 \text{ mA}$$

An electric circuit is given below. $V_1 = 1 \text{ V}$ and Resistance $R = 1000 \Omega$.

The current through the resistance R is very close to 1 mA and the voltage across point A and B, V_{AB} = 1 V. Now the circuit is changed to:

where value of $V_2=5\,V$. The internal resistances of both the batteries are $0.1\,\Omega$. The current through the resistance R is about:

- (a) 1·0 mA
- (b) 1.2 mA
- (c) 3.0 mA
- (d) 5.0 mA

ANS: C

MAGNETISM

SSBCrack EXAMS

Which one of the following statements about magnetic field lines is NOT

- 1. correct?
 - (a) They can emanate from a point
 - (b) They do not cross each other \checkmark
 - (c) Field lines between two poles cannot be precisely straight lines at the ends
 - (d) There are no field lines within a bar magnet

Which one of the following statements about magnetic field lines is NOT correct?

- (a) They can emanate from a point
- (b) They do not cross each other
- (c) Field lines between two poles cannot be precisely straight lines at the ends
- (d) There are no field lines within a bar magnet

Answer: (D)

The magnetic field strength of a currentcarrying wire at a particular distance from the axis of the wire

- depends upon the current in the
- (b) depends upon the radius of the wire
- (c) depends upon the temperature of the surroundings
- (d) None of the above

$$\frac{B \propto 2}{}$$

The magnetic field strength of a currentcarrying wire at a particular distance from the axis of the wire

- (a) depends upon the current in the wire
- (b) depends upon the radius of the wire
- (c) depends upon the temperature of the surroundings
- (d) None of the above

Answer: (A)

SSBCrack EXAMS

Consider the following statements about a solenoid:

- 1. The magnetic field strength in a solenoid depends upon the number of turns per unit length in the solenoid
- 2 The magnetic field strength in a solenoid depends upon the current flowing in the wire of the solenoid
 - The magnetic field strength in a solenoid depends upon the diameter of the solenoid

Which of the statements given above are correct?

- (a) 1, 2 and 3
- (b) 1 and 3 only
- (c) 2 and 3 only
- (d) 1 and 2 only

SSBCrack EXAMS

Consider the following statements about a solenoid:

- The magnetic field strength in a solenoid depends upon the number of turns per unit length in the solenoid
- The magnetic field strength in a solenoid depends upon the current flowing in the wire of the solenoid
- The magnetic field strength in a solenoid depends upon the diameter of the solenoid

Which of the statements given above are correct?

- (a) 1, 2 and 3
- (b) 1 and 3 only
- (c) 2 and 3 only
- (d) 1 and 2 only

Answer: (D)

Which one of the following statements regarding magnetic field is NOT correct?

- (a) Magnetic field is a quantity that has direction and magnitude
- (b) Magnetic field lines are closed curves
- (e) Magnetic field lines are open curves
- (d) No two magnetic field lines are found to cross each other

Which one of the following statements regarding magnetic field is NOT correct?

- (a) Magnetic field is a quantity that has direction and magnitude
- (b) Magnetic field lines are closed curves
- (c) Magnetic field lines are open curves
- (d) No two magnetic field lines are found to cross each other

Answer: (C)

Consider the following image:

A proton enters a magnetic field at right angles to it, as shown above. The direction of force acting on the proton will be

- (a) to the right
- (b) to the left
- (c) out of the page
- (d) into the page

$$\vec{g} = q (\vec{v} \times \vec{B})$$

A proton enters a magnetic field at right angles to it, as shown above. The direction of force acting on the proton will be

- (a) to the right
- (b) to the left
- (c) out of the page
- (d) into the page

Answer: (D)

Imagine a current-carrying straight conductor with magnetic field of lines in anti-clockwise direction. Then the direction of current is determined by

- (a) the Right-Hand Thumb rule and it would be in the downward direction.
- the Right-Hand Thumb rule and it would be in the upward direction.
- (d) the Left-Hand Thumb rule and it would be in the upward direction.

dockwise inside / downwards

anti-clockwise outside / apwards.

Imagine a current-carrying straight conductor with magnetic field of lines in anti-clockwise direction. Then the direction of current is determined by

- (a) the Right-Hand Thumb rule and it would be in the downward direction.
- (b) the Left-Hand Thumb rule and it would be in the downward direction.
- (c) the Right-Hand Thumb rule and it would be in the upward direction.
- (d) the Left-Hand Thumb rule and it would be in the upward direction.

Answer: (C)

The magnetic field produced by a current-carrying straight wire at a point outside the wire depends

- (a) inversely on the distance from it
- (b) directly on the distance from it
- (c) inversely at short distances and directly at large distances from it
- (d) directly on the distance (at short distances) and inversely on the distance (at long distances) from it

The magnetic field produced by a current-carrying straight wire at a point outside the wire depends

- (a) inversely on the distance from it
- (b) directly on the distance from it
- (c) inversely at short distances and directly at large distances from it
- (d) directly on the distance (at short distances) and inversely on the distance (at long distances) from it

Answer: (D)

According to Fleming's right-hand rule, if the forefinger indicates the direction of magnetic field and thumb shows the direction of motion of conductor, then the stretched middle finger will predict the direction of

- (a) force acting on the conductor
- (b) electric field
- (c) induced current
- (d) current

According to Fleming's right-hand rule, if the forefinger indicates the direction of magnetic field and thumb shows the direction of motion of conductor, then the stretched middle finger will predict the direction of

- (a) force acting on the conductor
- (b) electric field
- (c) induced current
- (d) current

Answer: (D)

A DC generator works on the principle of

- (a) Ohm's law
- (b) Joule's law of heating
- (c) Faraday's laws of electromagnetic induction
- (d) None of the above

A DC generator works on the principle of

- (a) Ohm's law
- (b) Joule's law of heating
- (c) Faraday's laws of electromagnetic induction
- (d) None of the above

Answer: (C)

The presence of magnetic field can be determined using which one of the following instruments?

- (a) Ammeter
- (b) Voltmeter
- (c) Magnetic needle
- (d) Motor

The presence of magnetic field can be determined using which one of the following instruments?

- (a) Ammeter
- (b) Voltmeter
- (c) Magnetic needle
- (d) Motor

Answer: (C)

A positive charge is moving towards south in a space where magnetic field is pointing in the north direction. The moving charge will experience:

- (a) a deflecting force towards north direction.
- (b) a deflecting force towards east direction.
- (c) a deflecting force towards west direction.
- (d) no deflecting force.

A positive charge is moving towards south in a space where magnetic field is pointing in the north direction. The moving charge will experience:

- (a) a deflecting force towards north direction.
- (b) a deflecting force towards east direction.
- (c) a deflecting force towards west direction.
- (d) no deflecting force.

Answer: (D)

Choose the <u>incorrect</u> statement from the following regarding magnetic lines of field

- A. The direction of magnetic field at a point is taken to be the direction in which the north pole of a magnetic compass needle points
- B. Magnetic field lines are closed curves
- C. If magnetic field lines are parallel and equidistant, they represent zero field strength
- D. Relative strength of magnetic field is shown by the degree of closeness of the field lines *

Choose the <u>incorrect</u> statement from the following regarding magnetic lines of field

- A. The direction of magnetic field at a point is taken to be the direction in which the north pole of a magnetic compass needle points
- B. Magnetic field lines are closed curves
- C. If magnetic field lines are parallel and equidistant, they represent zero field strength
- D. Relative strength of magnetic field is shown by the degree of closeness of the field lines *

For a current in a long straight solenoid N and S poles are created at the two ends. Among the following statements, the <u>incorrect</u> statement is

- (a) The field lines inside the solenoid are in the form of straight lines which indicates that the magnetic field is the same at all points inside the solenoid
- (b) The strong magnetic field produced inside the solenoid can be used to magnetize a piece of magnetic material like soft iron, when placed inside the coil
- (c) The pattern of the magnetic field associated with the solenoid is different from the pattern of the magnetic field around a bar magnet
- (d) The N- and S-poles exchange position when the direction of current through the solenoid is reversed.

For a current in a long straight solenoid N and S poles are created at the two ends. Among the following statements, the <u>incorrect</u> statement is

- (a) The field lines inside the solenoid are in the form of straight lines which indicates that the magnetic field is the same at all points inside the solenoid
- (b) The strong magnetic field produced inside the solenoid can be used to magnetize a piece of magnetic material like soft iron, when placed inside the coil
- (c) The pattern of the magnetic field associated with the solenoid is different from the pattern of the magnetic field around a bar magnet
- (d) The N- and S-poles exchange position when the direction of current through the solenoid is reversed.

A constant current flows in a horizontal wire in the plane of the paper from east to west as shown in Figure 13.5. The direction of magnetic field at a point will be North to South

- (a) directly above the wire
- (b) directly below the wire
- (c) at a point located in the plane of the paper, on the north side of the wire
- (d) at a point located in the plane of the paper, on the south side of the wire

A constant current flows in a horizontal wire in the plane of the paper from east to west as shown in Figure 13.5. The direction of magnetic field at a point will be North to South

(a) directly above the wire

(b) directly below the wire

- (c) at a point located in the plane of the paper, on the north side of the wire
- (d) at a point located in the plane of the paper, on the south side of the wire

The strength of magnetic field inside a long current carrying straight solenoid is

- (a) more at the ends than at the centre
- (b) minimum in the middle
- (c) same at all points
- (d) found to increase from one end to the other

The strength of magnetic field inside a long current carrying straight solenoid is

- (a) more at the ends than at the centre
- (b) minimum in the middle
- (c) same at all points
- (d) found to increase from one end to the other

To convert an AC generator into DC generator

- (a) split-ring type commutator must be used
- (b) slip rings and brushes must be used
- (c) a stronger magnetic field has to be used
- (d) a rectangular wire loop has to be used

To convert an AC generator into DC generator

- (a) split-ring type commutator must be used
- (b) slip rings and brushes must be used
- (c) a stronger magnetic field has to be used
- (d) a rectangular wire loop has to be used

REVISION TOPICS:

(13/08/24)

Miscellaneous Topics

NDA-CDS 2 2024

55

rack