

ANALYTICAL GEOMETRY 3D CLASS 1

ISSBCrack

Crack

28 Oct 2024 Live Classes Schedule

8:00AM	28 OCTOBER 2024 DAILY CURRENT AFFAIRS	RUBY MA'AM	
9:00AM	28 OCTOBER 2024 DAILY DEFENCE UPDATES	DIVYANSHU SIR	

GK - POLITY - CONSTITUTIONAL BODIES	RUBY MA
CHEMISTRY - CARBON	SHIVANGI M
ENGLISH - FILL IN THE BLANKS - CLASS 1	ANURADHA M
MATHS - MENSURATION 2D - CLASS 2	NAVJYOT

	AFCAT 1 2025 LIVE CLASSES	3
4:00PM	STATIC GK - POLITY - CLASS 2	DIVYANSHU SIR
5:30PM	ENGLISH - FILL IN THE BLANKS - CLASS 1	ANURADHA MA'AM
7:00PM	MATHS - MENSURATION 2D - CLASS 2	NAVJYOTI SIR
7:00PM	MATHS - MENSURATION 2D - CLASS 2	NAVJYOTI SI

DOWNLOAD THE APP NOW

-

Get IT ON Google Play

EXAMS

CALL US: 080-69185400

11:30A

1:00Pl 5:30Pl 7:00P

COORDINATE AXES AND COORDINATE PLANES

OCTANTS

Octants \rightarrow	Ι	II	III	IV	V	VI	VII	VIII
Coordinates	OXYZ	OX'YZ	OX'Y'Z	OXY'Z	OXYZ′	OX'YZ'	OX'Y'Z'	OXY'Z'
\downarrow	$\langle \rangle$	}						
x	+	_	_	+	+	-	-	+
у	+	+	-	_	+	+	_	_
z	+	+	+	+	_	_	_	_

COORDINATES OF A POINT

DISTANCE FORMULA

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

NDA 1 2025 LIVE CLASS - MATHS - PART 1 SECTION FORMULA

NDA 1 2025 LIVE CLASS - MATHS - PART 1

$$x = \underbrace{mx_2 - nx_j}_{M-N} \quad ; \quad y = \underbrace{my_2 - ny_j}_{M-N} \quad ; \quad z = \underbrace{mz_2 - nz_j}_{M-N}$$

k:1 comes -ve when solving for ratio,

MID-POINT AND CENTROID

 (χ_1,χ_2,χ_2) (χ,χ,z) $(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1})$

 $\chi = \frac{\chi + \chi_2}{2} \quad ; \quad \chi = \frac{\chi + \chi_2}{2} \quad ; \quad \chi = \frac{\chi + \chi_2}{2}$ $\bigwedge^{A}(\chi_{i},\chi_{i},Z_{i})$ coordinates of centroid, p $\left(\frac{\chi_1 + \chi_2 + \chi_3}{3}, \frac{\eta_1 + \eta_2 + \eta_3}{3}, \frac{Z_1 + Z_2 + Z_3}{3}\right)$ $C(x_3,y_3,z_3)$ В (χ_2, χ_2, χ_2)

QUESTION

Find the coordinates of a point equidistant from the four points O (0, 0, 0),

A (1, 0, 0), B (0, m, 0) and C (0, 0, n). $OP^2 = OB^2$ $y = \frac{1}{2}$ det the point be P(x,y,z). $0p^2 = 04^2$ $(x-0)^{2} + (y-0)^{2} + (z-0)^{2} = (x-l)^{2} + (y-0)^{2} + (z-0)^{2} \qquad op^{2} = oc^{2}$ $\gamma^2 = \chi^2 - 2 l \chi + l^2$ $l^2 = 2lx \neq l = \frac{l}{2}$

QUESTION

If a parallelopiped is formed by planes drawn through the points (2, 3, 5)

and (5, 9, 7) parallel to the coordinate planes, then find the length of edges of a parallelopiped and length of the diagonal.

$$dength of edges = 5-2, \quad q-3 \quad 7-5 \quad 3, \, 6, \, 2$$

$$diagma/ = \sqrt{a^2 + b^2 + c^2} = \sqrt{3^2 + b^2 + 2^2} \quad (5, 0, 0) \quad (5, 0, 0)$$

$$= \sqrt{q + 36 + 9} \quad L \quad --- \quad b$$

$$= 7 \text{ units} \quad b$$

SSBCrack

QUESTION

Find the ratio in which the line segment joining the points (2, 4, 5) and

(3, 5, -4) is divided by the *xz*-plane.

(a, 4, 5) (z, 0, z) (3, 5, -4)

$$0 = \frac{4+5k}{k+1} = \frac{7}{k} = -\frac{4}{5} \quad (external division)$$

$$\frac{1}{5} \quad (4:5)$$

DIRECTION COSINES OF A LINE

 $\cos^2 q + \cos^2 \beta + \cos^2 \gamma = 1$

< l, m, n >

DIRECTION COSINES OF A LINE PASSING THROUGH

TWO POINTS

 $B(\chi_2, \chi_2, \chi_2)$ $A\left(\mathfrak{X},\mathfrak{Y},\mathfrak{Z}\right)$

$$AB = \sqrt{(x_2 - z_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

direction cosines of AB =7
$$L = \frac{\chi_2 - \chi_1}{AB}$$
 $M = \frac{\chi_2 - \chi_1}{AB}$ $N = \frac{\chi_2 - \chi_1}{AB}$
AB AB AB

DIRECTION RATIOS OF A LINE

-> numbers proportional to direction ratios.

$$\langle a, b, c \rangle$$

 $l = \pm a \qquad M = \pm b \qquad n = \pm c$
 $\sqrt{a^2 + b^2 + c^2} \qquad \sqrt{a^2 + b^2 + c^2} \qquad \sqrt{a^2 + b^2 + c^2}$
(D. Rs. related to Dcs.)

EQUATION OF LINE

(1) one passing point 2 two passing points Dir. ratios/Dir. cosines

1 passing point and dir. ratios/ cosines is giren. В $\left(\chi_{I}, \chi_{I}, Z_{I}\right)$ eqn of line AB $\Rightarrow \frac{\chi - \chi_j}{a} = \frac{4 - 4}{6} = \frac{\chi - \chi_j}{C}$ (OR) $\frac{\chi - \chi_{1}}{l} = \frac{\eta - \eta_{1}}{m} = \frac{Z - Z_{1}}{m}$

passing points, Two ່ຈົ dir. ratio / dir cosines $\alpha x_2 - x_1 = \frac{1}{2} - \frac{1}{2} - \frac{1}{2}$ (221 y 21 Z2) $\chi - \chi_{l}$ $\overline{x}_2 - \overline{z}_1$ $\chi_2 - \chi_1$ (x_{1}, y_{1}, z_{1})

ANGLE BETWEEN TWO LINES

*
$$l_{1}$$
 m_{1} m_{2} m_{2} m_{2} m_{2}
(Dir. cosines of line,) (Dir. cosines of Aine_{1})
($coso = l_{1} l_{2} + m_{1} m_{2} + m_{1} m_{2}$)
* l_{f} dir. ratios are given, $a_{1} b_{1} c_{1}$ and $a_{2} b_{2} c_{2}$
 $coso = \frac{a_{1} a_{2} + b_{1} b_{2} + c_{1}^{2}}{\sqrt{a_{2}^{2} + b_{2}^{2} + c_{2}^{2}}}$

- When given two lines are perpendicular $l_1 l_2 + m_1 m_2 + n_1 m_2 = 0$; $q_1 q_2 + b_1 b_2 + q_1 c_2 = 0$

- When given two lines are parallel. $\frac{a_{1}}{q_{2}} = \frac{b_{1}}{b_{2}} = \frac{c_{1}}{c_{2}}$ $\frac{l_{1}}{l_{2}} = \frac{m_{1}}{m_{2}} = \frac{m_{1}}{m_{2}}$

SKEW LINES AND SHORTEST DISTANCE BETWEEN THEM

Lines not parallel and not intersecting, det two skew lines be, $\frac{\chi - \chi_j}{a_j} = \frac{f - f_j}{b_j} = \frac{z - \chi_j}{c_j}$ $\frac{\chi - \chi_2}{a_2} + \frac{\chi - \chi_2}{b_2} = \frac{\chi - \chi_2}{c_2}$ $\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$ $\frac{1}{\sqrt{(b_1c_2-b_2c_1)^2+(c_1a_2-c_2a_1)^2+(a_1b_2-a_2b_1)^2}}$

COPLANARITY OF TWO LINES

(c)

ANALYTICAL GEOMETRY 3D CLASS 2

* * * * * * * *

ISSBCrack

