

8 Nov 2024 Live Classes Schedule

08 NOVEMBER 2024 DAILY CURRENT AFFAIRS RUBY MA'AM (8:00AM

08 NOVEMBER 2024 DAILY DEFENCE UPDATES DIVYANSHU SIR 9:00AM

SSB INTERVIEW LIVE CLASSES

9:30AM **OVERVIEW OF TAT & WAT** ANURADHA MA'AM

NDA 1 2025 LIVE CLASSES

GK - MODERN HISTORY - CLASS 1 11:30AM

RUBY MA'AM

MATHS - PERMUTATION & COMBINATION - CLASS 3 4:00PM

NAVJYOTI SIR

5:30PM **ENGLISH - COMPREHENSION - CLASS 1** (ANURADHA MA'AM)

CDS 1 2025 LIVE CLASSES

/11:30AM **GK - MODERN HISTORY - CLASS 1**

RUBY MA'AM

5:30PM

ENGLISH - COMPREHENSION - CLASS 1

ANURADHA MA'AM

7:00PM

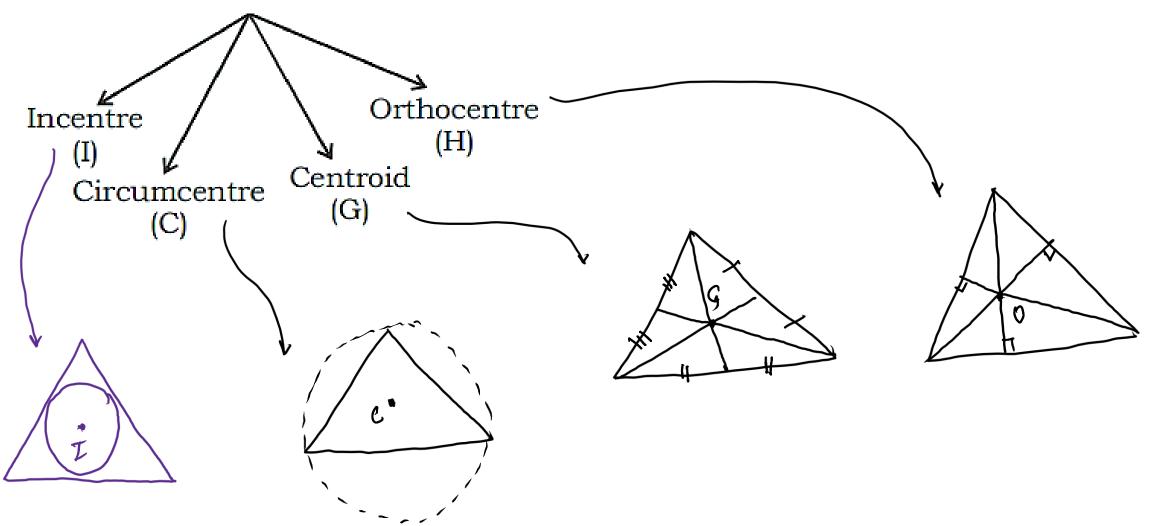
MATHS - GEOMETRY - CLASS 4

NAVJYOTI SIR

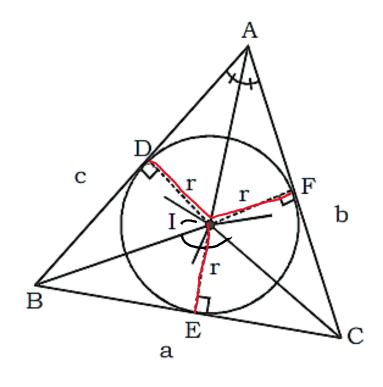
AFCAT 1 2025 LIVE CLASSES

5:30PM **ENGLISH - COMPREHENSION - CLASS 1** ANURADHA MA'AM

CENTRES OF TRIANGLE



INCENTRE



point of intersection of angle bisectors.

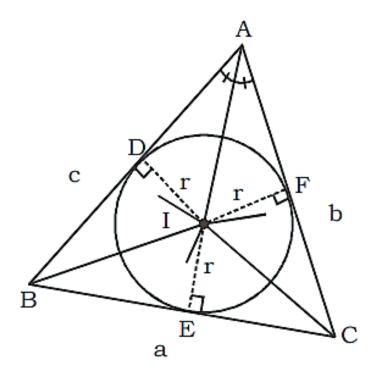
$$2B2C = 90^{\circ} + 2A$$

$$2A7C = 90^{\circ} + 2B$$

$$2A2B = 90^{\circ} + 2C$$

I is equidistant from each side.

INCENTRE



$$AE = h_1$$

$$BP = h_2$$

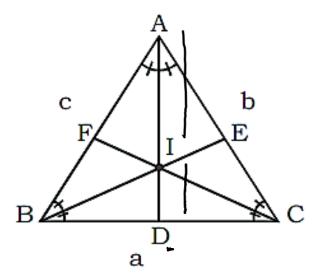
$$CD = h_3$$

If altitudes h₁, h₂, h₃ are given

$$\frac{1}{r} = \frac{1}{h_1} + \frac{1}{h_2} + \frac{1}{h_3}$$
radius of inche (in-radius)

SSBCrack EXAMS

INCENTRE

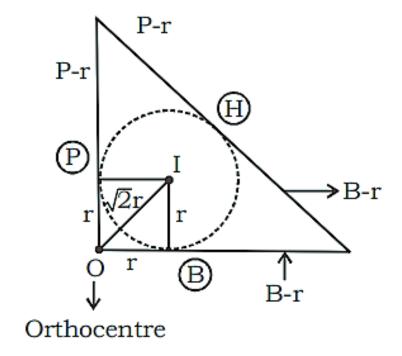


$$\frac{AI}{ID} = \frac{b+c}{a}$$

$$\frac{\mathrm{BI}}{\mathrm{IE}} = \frac{\mathrm{c} + \mathrm{a}}{\mathrm{b}}$$

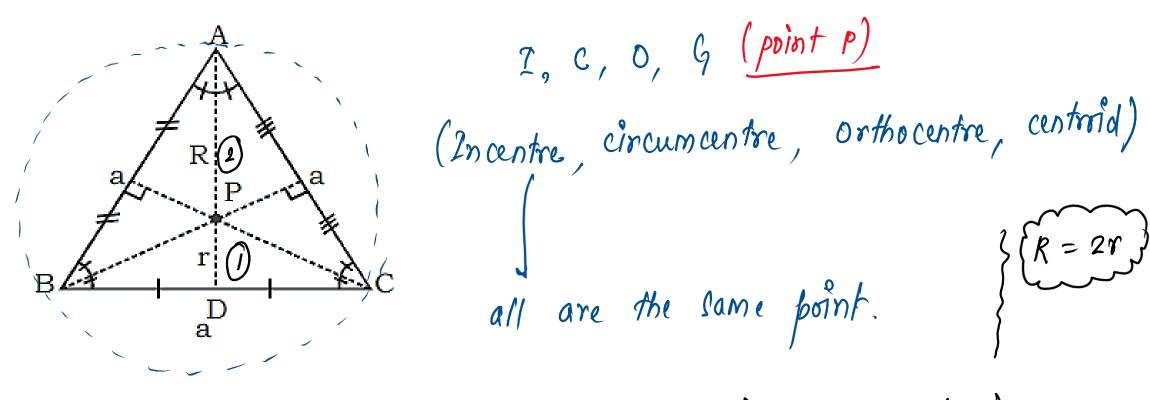
$$\frac{\text{CI}}{\text{IF}} = \frac{a+b}{c}$$

INCENTRE – RIGHT ANGLE TRIANGLE



Distance between in-centre and orthocentre = $\sqrt{2}r$

INCENTRE - EQUILATERAL TRIANGLE



$$AD = \frac{\sqrt{3}}{2}a$$

$$R = \frac{2}{3}(AD)$$

$$r = \frac{1}{3}(AD)$$

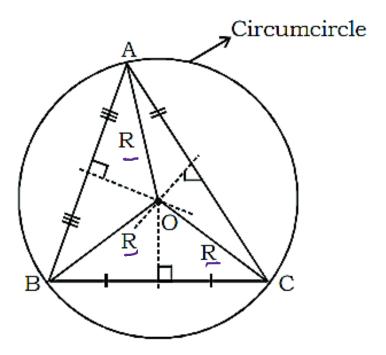
$$R = \frac{9}{4\sqrt{3}}$$

QUESTION

What is the ratio between the area of incircle and circumcircle for a given equilateral triangle ?

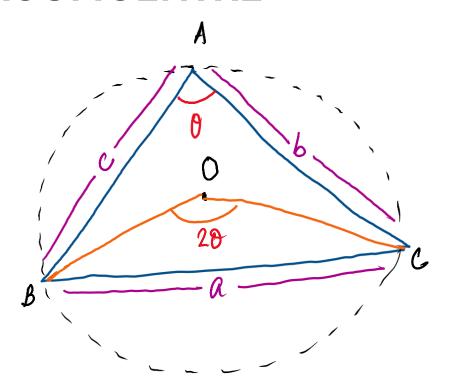
$$\frac{\pi^2}{\pi^2} = \left(\frac{\pi}{R}\right)^2 = \left(\frac{1}{2}\right)^2 = \frac{1}{2} = \frac{\pi}{2} = \frac{\pi}{2}$$

CIRCUMCENTRE



- Intersection of all 3 perpendicular bisectors.
- It may lie inside, outside or on the triangle.

CIRCUMCENTRE



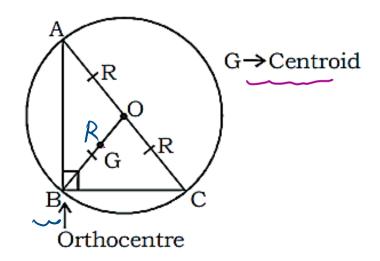
$$\angle BOC = 2\angle A; \angle AOB = 2\angle C; \angle AOC = 2\angle B$$

CIRCUMCENTRE

$$R = \frac{a}{2\sin A} = \frac{b}{2\sin B} = \frac{c}{2\sin C}$$

$$\therefore \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

CIRCUMCENTRE - RIGHT ANGLED TRIANGLE

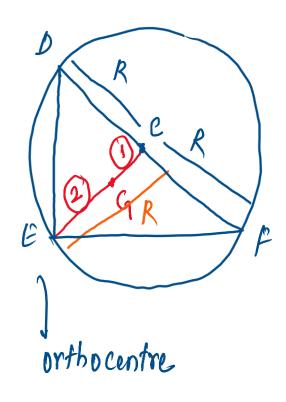


BO = R = distance between orthocentre and circumcentre = median of hypotenuse =

shortest median =
$$\frac{H}{2}$$

QUESTION

What is the distance between centroid and circumcentre of a right triangle?



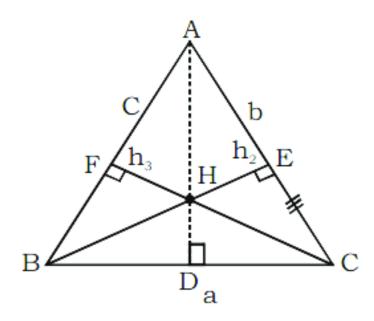
Ec is median at hypotenuse, DF:

$$EC = R$$

$$GC = \frac{1}{3}R = \frac{1}{3}\left(\frac{H}{R}\right) = \frac{H}{6}$$

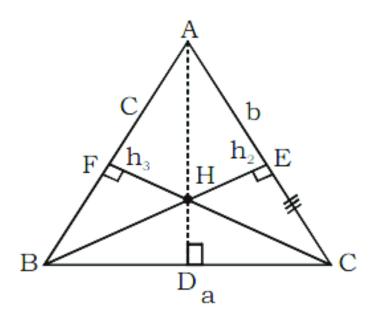
$$\frac{R}{3} = \frac{1}{6}$$

ORTHOCENTRE



- Intersection of all 3 altitudes.
- It may lie inside, outside or on the triangle.

ORTHOCENTRE

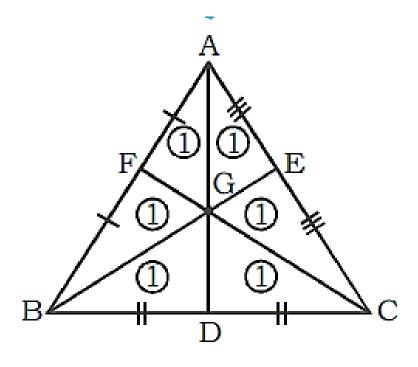


Area =
$$\frac{1}{2}$$
 ah₁ = $\frac{1}{2}$ bh₂ = $\frac{1}{2}$ ch₃
ah₁ = bh₂ = ch₃ = 2 × Area
h₁: h₂: h₃ = $\frac{1}{a}$: $\frac{1}{b}$: $\frac{1}{c}$

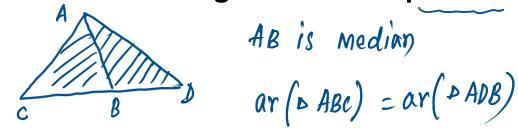
CENTROID

- Intersection of all 3 medians.
- It lies always inside the triangle.

CENTROID



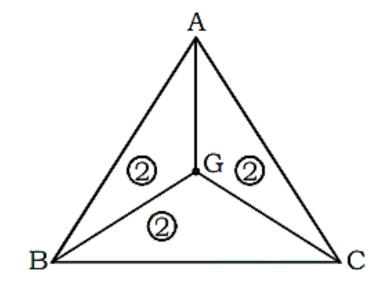
Median divides the triangle into two equal areas.



6 triangle made by 3 medians have equal area.

Area of each triangle =
$$\frac{1}{6}$$
 Area of $\triangle ABC$

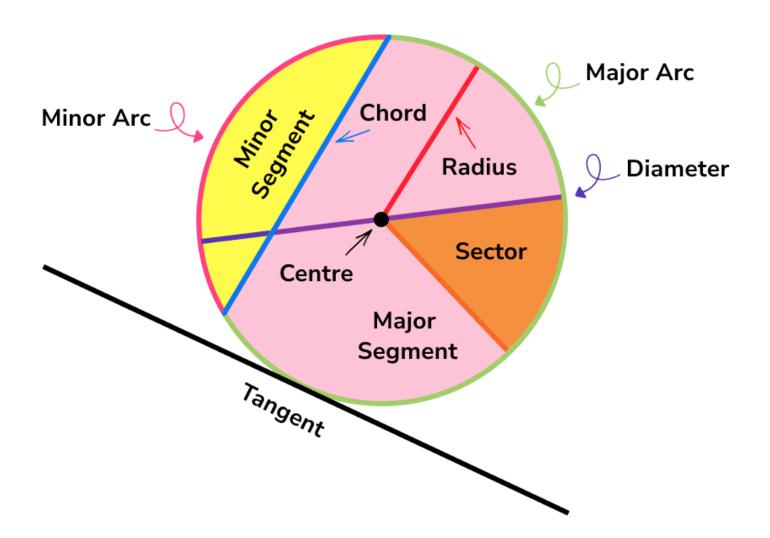
CENTROID



$$ar(\triangle AGB) = ar(\triangle AGC) = ar(\triangle BGC)$$

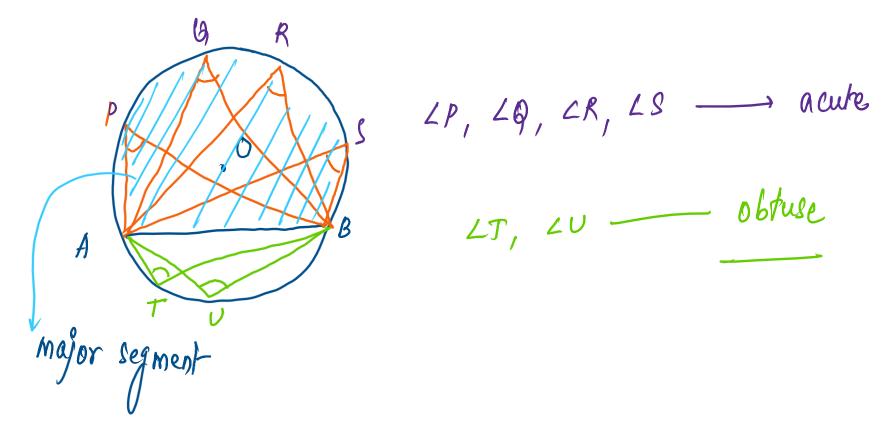
(joining vertex to centroid)

CIRCLE



ANGLE IN SEGMENT

- Angle formed in the major segment of the circle is acute.
- Angle formed in the minor segment of the circle is obtuse.



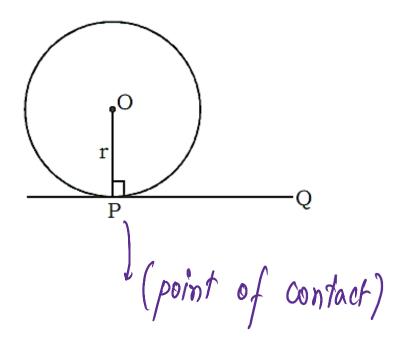
CIRCLE - PROPERTIES

- Two circles are congruent only when they have equal radii.
- All circles are similar to each other.
- Radius drawn perpendicular to chord bisects the chord.
- Equal chords of circle subtend equal angles at the centre.

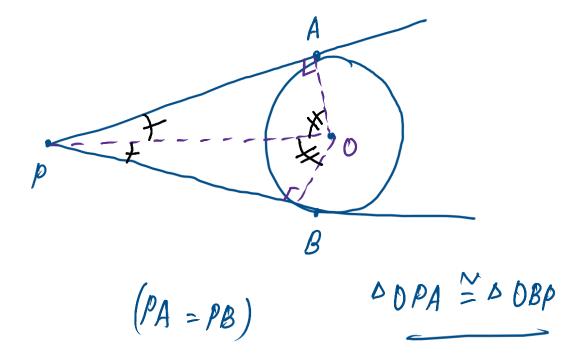
CIRCLE – PROPERTIES

- A circle can only circumscribe a rectangle, trapezium, triangle, square and kite.
- Chords equidistant from centre are equal in length.
- Diameters are the only chords that bisect each other.

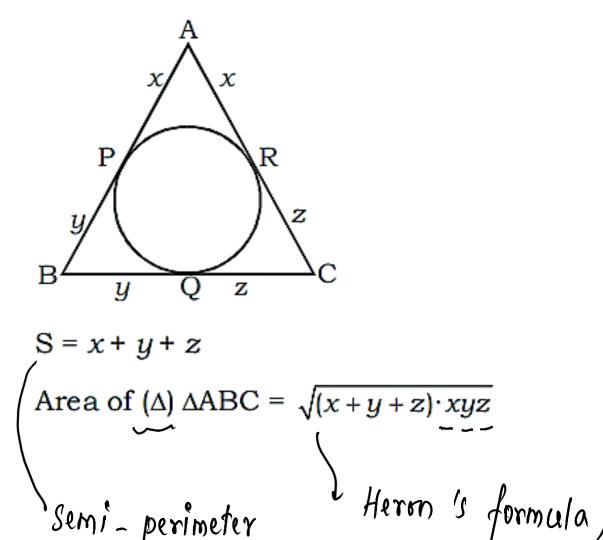
TANGENT



- OP perpendicular to PQ. (radius 1 Pargent)
- Tangents drawn from an external point to a circle are equal.



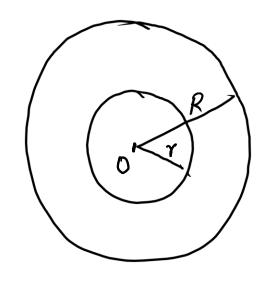
TANGENTS AND INCENTRE



$$\mathbf{r} = \frac{\Delta}{s} = \sqrt{\frac{xyz(x+y+z)}{x+y+z}}$$

$$\mathbf{r} = \sqrt{\frac{xyz}{x+y+z}}$$

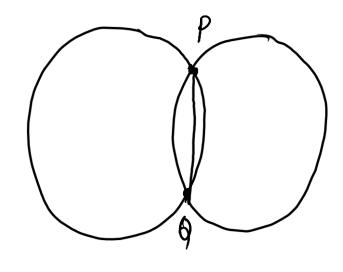
CONCENTRIC CIRCLES



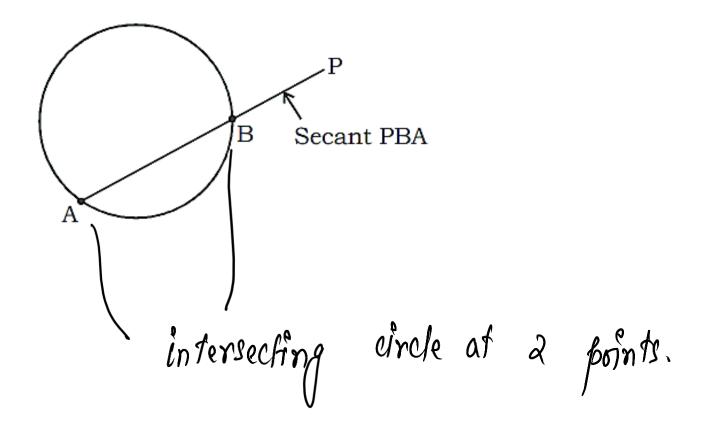
circles having same centre.

COMMON CHORD

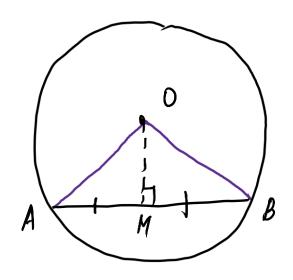
When a point of intersection of two given circles is joined, this is the common chord.



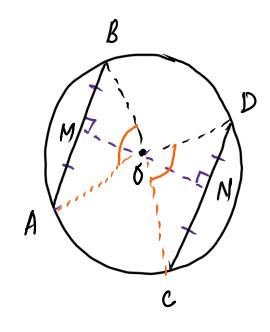
SECANT



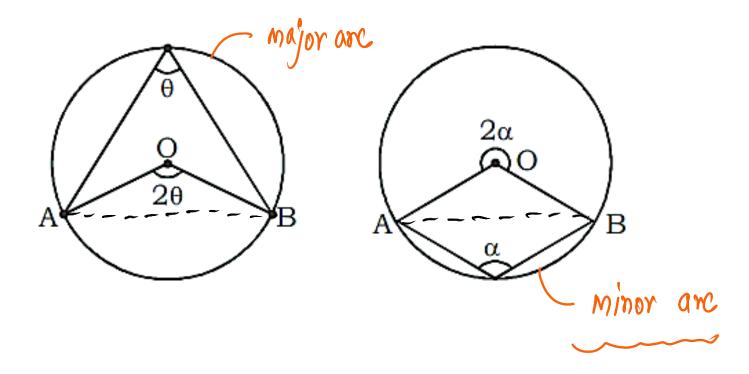
A perpendicular drawn from the centre of a circle to a chord bisects the chord.



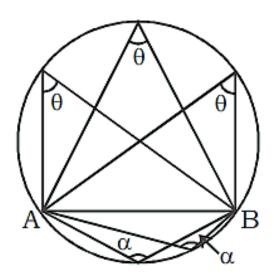
- Equal chords are equidistant from the centre.
- Equal chords make equal angle at the centre.



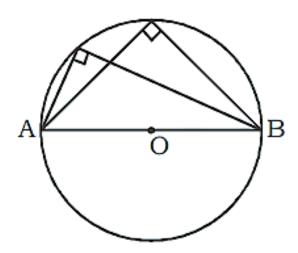
 Angle made by an arc on centre is double the angle made by the same arc on the circumference of centre.



Angle made by an arc on same side of circle are equal.

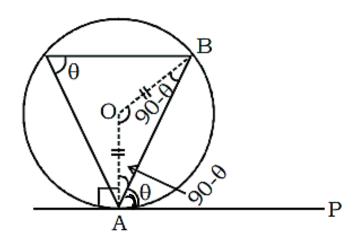


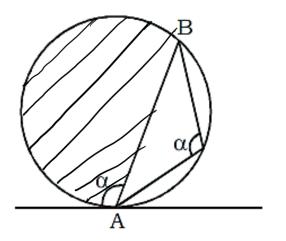
Angle made in semi-circle is right angle.



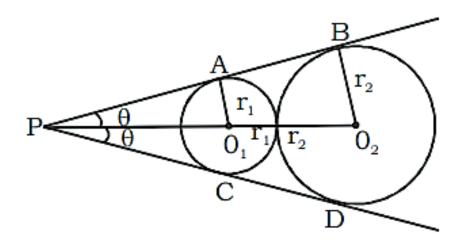
ALTERNATE SEGMENT THEOREM

 Angle made by a chord and tangent is equal to the angle made by the chord in other segment of the circle





CDS & AFCAT 1 2024 LIVE CLASS - MATHS - PART 4



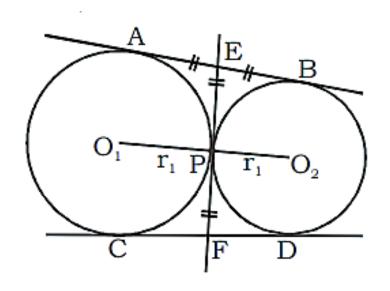
cincles are externally touching

$$0_1 0_2 = r_1 + r_2$$

$$\left(\frac{\mathbf{r}_1}{\mathbf{r}_2}\right) = \frac{1 - \sin \theta}{1 + \sin \theta}$$

COMMON TANGENTS – EXTERNAL TOUCHING

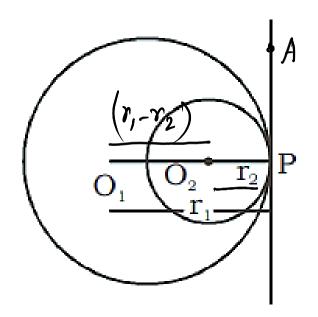
 When two circles touch each other externally. Then distance between their centres is sum of their radii.



$$0, 0_2 = r, + r_2$$

Common Tangents — AB, CD, EF

COMMON TANGENTS – INTERNAL TOUCHING

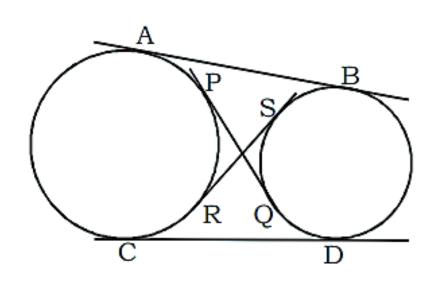


common dangent — AP — (1)

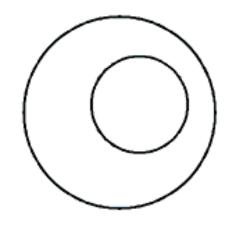
distance between centres = diff. of radii

=
$$r_1 - r_2$$

COMMON TANGENTS – NOT INTERSECTING

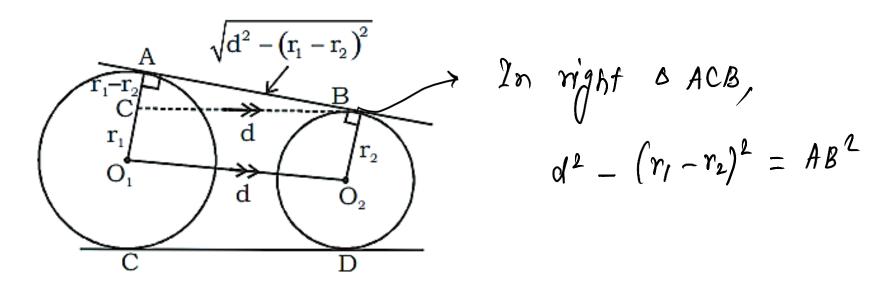


COMMON TANGENTS – NOT INTERSECTING



Vo common tangent

LENGTH OF DIRECT COMMON TANGENT

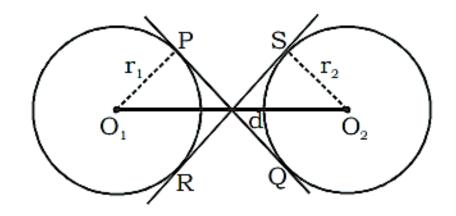


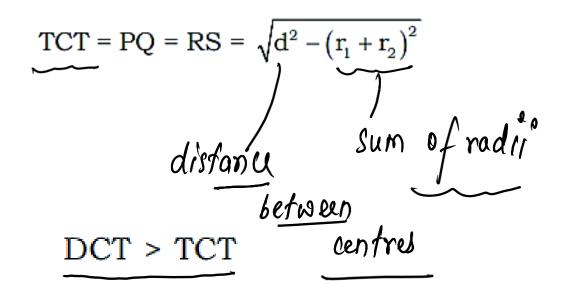
$$CB \parallel O_1O_2$$

DCT = AB = CD =
$$\sqrt{d^2 - (r_1 - r_2)^2}$$

$$d - distance between centres$$

LENGTH OF TRANSVERSE COMMON TANGENT





CDS12025 LIVE GEOMETRY **ISSBCrack** CLASS 5 **NAVJYOTI SIR** Crack