CDS12025 LIVE GEOMETRY **ISSBCrack** CLASS 5 **NAVJYOTI SIR** Crack

11 Nov 2024 Live Classes Schedule

8:00AM - (11 NOVEMBER 2024 DAILY CURRENT AFFAIRS RUBY MA'AM

9:00AM - 11 NOVEMBER 2024 DAILY DEFENCE UPDATES DIVYANSHU SIR

SSB INTERVIEW LIVE CLASSES

9:30AM - OVERVIEW OF SRT & SDT ANURADHA MA'AM

NDA 1 2025 LIVE CLASSES

11:30AM - GK - MODERN HISTORY - CLASS 2 RUBY MA'AM

4:00PM MATHS - BINOMIAL THEOREM - CLASS 1 NAVJYOTI SIR

5:30PM — ENGLISH - COMPREHENSION - CLASS 2 ANURADHA MA'AM

CDS 1 2025 LIVE CLASSES

11:30AM GK - MODERN HISTORY - CLASS 2 RUBY MA'AM

5:30PM - (ENGLISH - COMPREHENSION - CLASS 2 ANURADHA MA'AM

7:00PM MATHS - GEOMETRY - CLASS 5 NAVJYOTI SIR

AFCAT 1 2025 LIVE CLASSES

5:30PM ENGLISH - COMPREHENSION - CLASS 2 ANURADHA MA'AM

Q) In the figure given below, $\angle A = 80^{\circ}$ and $\angle ABC = 60^{\circ}$. BD and CD bisect angles B and C respectively. What are the values of x and y respectively?

- 10 and 130 10 and 125
- 20 and 130 20 and 125

DABC - angle sum,
$$DDBC - ZD = Zy = 130^{\circ}$$

Q) In the figure given below, $\angle A = 80^{\circ}$ and $\angle ABC = 60^{\circ}$. BD and CD bisect angles B and C respectively. What are the values of x and y respectively?

(a) 10 and 130

(b) 10 and 125

(c) 20 and 130

(d) 20 and 125

Ans: (c)

Q) In the figure given below, PQR is a non-isosceles right-angled triangle, right angled at Q. If LM and QT are parallel and QT = PT, then what is \angle RLM equal to?

- (a) ∠PQT
- (c) ∠RML

- (b) ∠LRM
- (d) ∠QPT

$$QT = PT = RT$$
 $TQ \quad || ML$
 $\angle PTQ = 90^\circ = \angle TML \quad (corresponding angles for \ \angle RML = 90^\circ \quad parallel line)$

Q) In the figure given below, PQR is a non-isosceles right-angled triangle, right angled at Q. If LM and QT are parallel and QT = PT, then what is \angle RLM equal to?

(a) ∠PQT

(b) ∠LRM

(c) ∠RML

(d) ∠QPT

Ans: (b)

Q)

In the figure given above, AD = CD = BC. What is the value of $\angle CDB$

- (a) 32°
- (b) 64°
- (c) 78°

$$x + 180^{\circ} - 4x + 96^{\circ} = 180^{\circ}$$

$$3x = 96^{\circ}$$

$$x = 34^{\circ}$$

$$3x = 3x^{\circ} = 64^{\circ}$$

Q)

In the figure given above, AD = CD = BC. What is the value

of $\angle CDB$

- (a) 32°
- (b) 64°
- (c) 78°

Ans: (b)

Q) If the bisectors BI and CI of the angles B and C of a $\triangle ABC$ meet at the point I, then what is $\angle BIC$ equal to?

(b)
$$90^{\circ} + \frac{A}{2}$$

(c)
$$90^{\circ} - \frac{A}{2}$$

(d)
$$90^{\circ} + A$$

$$I \longrightarrow incentre$$

Q) If the bisectors BI and CI of the angles B and C of a $\triangle ABC$ meet at the point I, then what is $\angle BIC$ equal to?

(a) 2A

(b) $90^{\circ} + \frac{A}{2}$

(c) $90^{\circ} - \frac{A}{2}$

(d) $90^{\circ} + A$

- Q)For a triangle, the radius of the circumcircle is double the radius of the inscribed circle, then which one of the following is correct?
 - (a) The triangle is a right-angled
 - (b) The triangle is an isosceles
 - (c) The triangle is an equilateral \checkmark
 - (d) None of the above

$$R = \frac{a}{\sqrt{3}}$$

- Q)For a triangle, the radius of the circumcircle is double the radius of the inscribed circle, then which one of the following is correct?
 - (a) The triangle is a right-angled
 - (b) The triangle is an isosceles
 - (c) The triangle is an equilateral
 - (d) None of the above

Ans: (c)

- Q) Consider the following statements
 - I. The perpendicular bisector of a chord of a circle does \checkmark not pass through the centre of the circle.
 - II. The angle in a semi-circle is a right angle. Which of the statements given above is/are correct?
 - (a) Only I

√(b) Only II

(c) Both I and II

(d) Neither I nor II

Q) Consider the following statements

I. The perpendicular bisector of a chord of a circle does not pass through the centre of the circle.

II. The angle in a semi-circle is a right angle. Which of the statements given above is/are correct?

(a) Only I

(b) Only II

(c) Both I and II

(d) Neither I nor II

Ans: (b)

Q)The side AC of a $\triangle ABC$ is produced to D such that BC = CD. If $\triangle ACB$ is 70°, then what is $\triangle ADB$ equal to?

(d) 110°

(angles apposite to equal)

Q) The side AC of a $\triangle ABC$ is produced to D such that BC = CD. If $\triangle ACB$ is 70°, then what is $\triangle ADB$ equal to?

- (a) 35°
- (c) 70°

- (b) 45°
- (d) 110°

Ans: (a)

CDS 1 2025 LIVE CLASS - MATHS - PART 5

- Q) In the figure given below $\angle ABC = \angle AED = 90^{\circ}$. Consider the following statements
 I. ABC and ADE are similar triangles.

 - II. The four points B, C, E and D may lie on a circle. X Which of the above statements is/are correct?

LAED =	LABC = 90°	AA
ZA =	LABC = 90°	Similarity

Only I

Only II

Both I and II

Neither I nor II

CDS 1 2025 LIVE CLASS - MATHS - PART 5

- Q) In the figure given below $\angle ABC = \angle AED = 90^{\circ}$. Consider the following statements
 - I. ABC and ADE are similar triangles.
 - II. The four points B, C, E and D may lie on a circle. Which of the above statements is/are correct?

- (a) Only I
- (c) Both I and II

- (b) Only II
- d) Neither I nor II

Ans: (a)

Q) Consider the following statement in respect of an equilateral $\triangle ABC$.

I. There is a point P inside the $\triangle ABC$ such that each of its sides subtends an angle of 120° at P.

II. There is a point P inside the $\triangle ABC$ such that the $\triangle PBC$ is obtuse angled and A is the orthocentre of $\triangle PBC$. X Which of the above statements is/are correct?

(a) Only I

(b) Only II

(c) Both I and II

(d) Neither I nor II

- Q) Consider the following statement in respect of an equilateral $\triangle ABC$.
 - I. There is a point P inside the $\triangle ABC$ such that each of its sides subtends an angle of 120° at P.
 - II. There is a point P inside the $\triangle ABC$ such that the $\triangle PBC$ is obtuse angled and A is the orthocentre of $\triangle PBC$.

Which of the above statements is/are correct?

(a) Only I

(b) Only II

(c) Both I and II

(d) Neither I nor II

Q)

In the figure given, $\angle B = 38^{\circ}$, AC = BC and AD = CD. What is $\angle D$ equal to?

(a) 26°

(b) 28°

(c) 38°

(d) 52°

Q)

In the figure given, $\angle B = 38^{\circ}$, AC = BC and AD = CD. What is $\angle D$ equal to?

(a) 26°

(b) 28°

(c) 38°

(d) 52°

Ans: (b)

Q) In the figure given below, what is the sum of the angles formed around A, B, C except the angles of the $\triangle ABC$?

$$360^{\circ} + 360^{\circ} + 360^{\circ} = 1080^{\circ}$$

$$\frac{1080^{\circ}}{-180^{\circ}}$$

$$\frac{900^{\circ}}{-180^{\circ}}$$

Q) In the figure given below, what is the sum of the angles formed around A, B, C except the angles of the $\triangle ABC$?

Ans: (c)

CDS 1 2025 LIVE CLASS - MATHS - PART 5

- Q) Consider the following statements
 - I. If the diagonals of a parallelogram ABCD are perpendicular, then ABCD may be a rhombus. \checkmark
 - II. If the diagonals of a quadrilateral *ABCD* are equal and perpendicular, then *ABCD* is a square. Which of the statements given above is/are correct?
 - (a) Only I

(b) Only II

(c) Both I and II

(d) Neither I nor II

CDS 1 2025 LIVE CLASS - MATHS - PART 5

- Q) Consider the following statements
 - I. If the diagonals of a parallelogram ABCD are perpendicular, then ABCD may be a rhombus.
 - II. If the diagonals of a quadrilateral ABCD are equal and perpendicular, then ABCD is a square.

Which of the statements given above is/are correct?

(a) Only I

(b) Only II

(c) Both I and II

(d) Neither I nor II

Q) $\triangle ADEF$ is formed by joining the mid-points of the sides of $\triangle ABC$. Similarly, a $\triangle PQR$ is formed by joining the mid-points of the sides of the $\triangle DEF$. If the sides of the $\triangle PQR$ are of lengths 1, 2 and 3 units, what is the perimeter of the $\triangle ABC$?

(a) 18 units

(b) 24 units

(c) 48 units

(d) Cannot be determined

$$PQ + QR + PR = 1 + 2 + 3 = 6$$

$$(4)x6 = 24 \text{ units}$$

CDS 1 2025 LIVE CLASS - MATHS - PART 5

Q) $\triangle ADEF$ is formed by joining the mid-points of the sides of $\triangle ABC$. Similarly, a $\triangle PQR$ is formed by joining the mid-points of the sides of the $\triangle DEF$. If the sides of the $\triangle PQR$ are of lengths 1, 2 and 3 units, what is the perimeter of the $\triangle ABC$?

(a) 18 units

(b) 24 units

(c) 48 units

(d) Cannot be determined

Ans: (b)

- Q) In a $\triangle ABC$, AD is the median through A and E is the midpoint of AD and BE produced meets AC at E. Then, E is equal to
 - (a) AC/5

(b) AC/4

(c) AC/3

(d) AC/2

CDS 1 2025 LIVE CLASS - MATHS - PART 5

Q) In a $\triangle ABC$, AD is the median through A and E is the midpoint of AD and BE produced meets AC at E. Then, E is equal to

(a) AC/5

(b) AC/4

(c) AC/3

(d) AC/2

Q) The angles of a triangle are in the ratio 4:1:1. Then the ratio of the largest side to the perimeter is

(a)
$$\frac{2}{3}$$

(b)
$$\frac{1}{2+\sqrt{3}}$$

(c)
$$\frac{\sqrt{3}}{2+\sqrt{3}}\checkmark$$

(d)
$$\frac{2}{1+\sqrt{3}}$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin c} = k$$

$$\frac{a}{\sin 120^{\circ}} = \frac{b}{\sin 30^{\circ}} = \frac{c}{\sin 30^{\circ}}$$

$$\frac{c}{\sin 120^{\circ}} = \frac{k}{\sin 30^{\circ}}$$

$$a = k \sin 120^{\circ} = \frac{\sqrt{3}k/2}{6}$$
 $b = k \sin 20^{\circ} = \frac{k/2}{2}$
 $c = k \sin 30^{\circ} = \frac{k/2}{2}$

Largest side = a
$$\frac{a}{a+b+c} = \frac{\sqrt{3}k}{2}k = \frac{\sqrt{3}}{4+\sqrt{3}}k + \frac{1}{4}k + \frac{1}{4}k$$

Q) The angles of a triangle are in the ratio 4:1:1. Then the ratio of the largest side to the perimeter is

(a)
$$\frac{2}{3}$$

(b)
$$\frac{1}{2+\sqrt{3}}$$

$$(c) \quad \frac{\sqrt{3}}{2+\sqrt{3}}$$

(d)
$$\frac{2}{1+\sqrt{3}}$$

Q)Based on the figure below, what is the value of x, if y = 10

- (a) 10
- (c) 12

- (b) 11
- (d) None of these

Q)Based on the figure below, what is the value of x, if y = 10

- (a) 10
- (c) 12

- (b) 11
- (d) None of these

Ans: (b)

Q) A closed polygon has six sides and one of its angles is 30° greater than each of the other five equal angles. What is the value of one of the equal angles?

(a) 55°

(b) 115°

(c) 150°

(d) 175°

Q) A closed polygon has six sides and one of its angles is 30° greater than each of the other five equal angles. What is the value of one of the equal angles?

(a) 55°

(b) 115°

(c) 150°

(d) 175°

Q) In the figure given below, AC is parallel to ED and AB = DE = 5 cm and BC = 7 cm. What is the area ABDE : area BCD equal to?

- (a) 10:5:7
- (c) 2:1:2

- (b) 8:4:7
- (d) 8:4:5

Q) In the figure given below, AC is parallel to ED and AB = DE = 5 cm and BC = 7 cm. What is the area ABDE : area BCD equal to?

- (a) 10:5:7
- (c) 2:1:2

- (b) 8:4:7
- (d) 8:4:5

Ans: (a)

- Q) Let ABCD be a rectangle. Let P, Q, R, S be the mid-points of sides AB, BC, CD, DA respectively. Then the quadrilateral PQRS is a
 - (a) Square
 - (b) Rectangle, but need not be a square
 - (c) Rhombus, but need not be a square
 - (d) Parallelogram, but need not be a rhombus

- Q) Let ABCD be a rectangle. Let P, Q, R, S be the mid-points of sides AB, BC, CD, DA respectively. Then the quadrilateral PQRS is a
 - (a) Square
 - (b) Rectangle, but need not be a square
 - (c) Rhombus, but need not be a square
 - (d) Parallelogram, but need not be a rhombus

- Q) If a quadrilateral has an inscribed circle, then the sum of a pair of opposite sides equals
 - (a) Half the sum of the diagonals
 - (b) Sum of the other pair of opposite sides
 - (c) Sum of two adjacent sides
 - (d) None of the above

- Q) If a quadrilateral has an inscribed circle, then the sum of a pair of opposite sides equals
 - (a) Half the sum of the diagonals
 - (b) Sum of the other pair of opposite sides
 - (c) Sum of two adjacent sides
 - (d) None of the above

Q) A square is inscribed in a right-angled triangle with legs p and q, and has a common right angle with the triangle. The diagonal of the square is given by

(a)
$$\frac{pq}{p+2q}$$

(b)
$$\frac{pq}{2p+q}$$

(c)
$$\frac{\sqrt{2}pq}{p+q}$$

d)
$$\frac{2pq}{p+q}$$

Q) A square is inscribed in a right-angled triangle with legs p and q, and has a common right angle with the triangle. The diagonal of the square is given by

(a)
$$\frac{pq}{p+2q}$$

(b)
$$\frac{pq}{2p+q}$$

(c)
$$\frac{\sqrt{2}pq}{p+q}$$

(d)
$$\frac{2pq}{p+q}$$

CDS 1 2025 LIVE CLASS - MATHS - PART 5

Q) A rhombus is formed by joining midpoints of the sides of a rectangle in the suitable order. If the area of the rhombus is 2 square units, then the area of the rectangle is

- (a) $2\sqrt{2}$ square units (b) 4 square units
- (c) $4\sqrt{2}$ square units (d) 8 square units

CDS 1 2025 LIVE CLASS - MATHS - PART 5

Q) A rhombus is formed by joining midpoints of the sides of a rectangle in the suitable order. If the area of the rhombus is 2 square units, then the area of the rectangle is

- (a) $2\sqrt{2}$ square units (b) 4 square units
- (c) $4\sqrt{2}$ square units (d) 8 square units

Ans: (b)

Q) ABCD is a parallelogram with AB and AD as adjacent sides. If $\angle A = 60^{\circ}$ and AB = 2AD, then the diagonal BD will be equal to

(a) $\sqrt{2}AD$

(b) $\sqrt{3}AD$

(c) 2AD

(d) 3AD

Q) ABCD is a parallelogram with AB and AD as adjacent sides. If $\angle A = 60^{\circ}$ and AB = 2AD, then the diagonal BD will be equal to

(a) $\sqrt{2}AD$

(b) $\sqrt{3}AD$

(c) 2AD

(d) 3AD

Q) In the figure given below, PQRS is a parallelogram. PA bisects angle P and SA bisects angle S. What is angle PAS equal to?

Q) In the figure given below, PQRS is a parallelogram. PA bisects angle P and SA bisects angle S. What is angle PAS equal to?

Ans: (c)

CDS12025 LIVE GEOMETRY **ISSBCrack CLASS 6 NAVJYOTI SIR** Crack