CDS 1 2025

MENSURATION 30 CLASS 2

ISSBCrack

NAVJYOTI SIR

14 Nov 2024 Live Classes Schedule

:00AM	14 NOVEMBER 2024 DAILY CURRENT AFFAIRS	RUBY MA'AM
:00AM	14 NOVEMBER 2024 DAILY DEFENCE UPDATES	DIVYANSHU SIR
	SSB INTERVIEW LIVE CLASSES	
9:30AM	OVERVIEW OF GPE & PRACTICE SESSION	ANURADHA MA'AM
	NDA 1 2025 LIVE CLASSES	
:30AM	GK - MODERN HISTORY - CLASS 5	RUBY MA'AM

11:30AM	GK - MODERN HISTORY - CLASS 5	RUBY MA'AM
1:00PM	CHEMISTRY MCQ - CLASS 7	SHIVANGI MA'AM
4:00PM	MATHS - SEQUENCE & SERIES - CLASS 2	NAVJYOTI SIR
5:30PM	ENGLISH - SENTENCE COMPLETION - CLASS 1	ANURADHA MA'AM

CDS 1 2025 LIVE CLASSES

11:30AM 1:00PM 5:30PM 7:00PM

GK - MODERN HISTORY - CLASS 5	RUBY MA'AM
CHEMISTRY MCQ - CLASS 7	SHIVANGI MA'AM
ENGLISH - SENTENCE COMPLETION - CLASS 1	ANURADHA MA'AM
MATHS - MENSURATION 3D - CLASS 2	NAVJYOTI SIR

CUTTING OF CONE

$$\frac{r_1}{r_2} = \frac{h_1}{h_2} = \frac{l_1}{l_2} \qquad (\text{Triangles are similar})$$

CUTTING OF CONE

Frustum

 r_1 r_2

$$\frac{\text{small cone CSA}}{\text{Big cone CSA}} = \frac{\pi r_1 l_1}{\pi r_2 l_2} = \left(\frac{r_1}{r_2}\right)^2 = \left(\frac{l_1}{l_2}\right)^2 = \left(\frac{h_1}{h_2}\right)^2$$
$$\frac{\text{small cone volume}}{\text{Big cone volume}} = \frac{\frac{1}{3}\pi r_1^2 h_1}{\frac{1}{3}\pi r_2^2 h_2} = \left(\frac{r_1}{r_2}\right)^3 = \left(\frac{l_1}{l_2}\right)^3 = \left(\frac{h_1}{h_2}\right)^3$$

CUTTING OF CONE

CSA of 5 parts \Rightarrow 1² : 2² - 1²: 3² - 2² : 4²-3² : 5²-4² **1** : **3** : **5** : **7** : **9** (Ratio) Volume of 5 parts \Rightarrow 1³ : 2³ - 1³: 3³ - 2³ : 4³ - 3³: 5³ - 4³ **1** : **7** : **19** : **37** : **61** (Ratio)

FRUSTUM OF A CONE

For part of what is obtained when
a cone is
$$cut$$
, parallel to base.
 $CSA = \pi (r_1 + r_2) L$
 $TSA = \pi (r_1 + r_2) l + \pi r_1^2 + \pi r_2^2$
 $Volume = \frac{1}{3} \pi h (r_1^2 + r_2^2 + r_1 r_2)$

SPHERE

,

Surface area =
$$\frac{4\pi r^2}{(curved surface area)/(7SA)}$$

Volume = $\frac{4\pi r^3}{3}$

QUESTION

A spherical ball was first polished and then it was cut into 4 similar pieces. What is the ratio of the polished area to the non-polished area ?

polished area = area of sphere =
$$4\pi r^2$$

unpolished area = $\left(2 \times \frac{\pi r^2}{4}\right) \times y$
= $4\pi r^2$
unpolished
Ratio = $\frac{4\pi r^2}{4\pi r^2} = (1:1)$

HEMISPHERE

HOLLOW SPHERE

$$\frac{1}{3} \sqrt{\pi R^{3} - \frac{4}{3}} \sqrt{\pi r^{3}} = \frac{4}{3} \sqrt{\pi R^{3} - r^{3}}$$

QUESTION

The external and internal diameters of an aluminium shell are 13 cm and 10 cm respectively. Find the volume of aluminum shell ?

$$2R = 13 \implies R = \frac{13}{3} = 6.5 \text{ cm}$$

 $2r = 10 \implies r = 5 \text{ cm}$

$$Volume = \pi \left(R^{3} - r^{3} \right) = (3.142) \left((6.5)^{3} - (5)^{3} \right)$$

PRISM

Base and Top of the prism is same. \checkmark

Surface of prism is lateral and not curved

Cube, cuboid are prism but cylinder is not prism.

TRIANGULAR PRISM

GENERAL FORMULA FOR ANY PRISM

HEXAGONAL PRISM

a

$$LSA = 6ah$$

$$TSA = 6ah + 2x 3\sqrt{3}a^{2}$$

$$= 6a(h + \sqrt{3}a)$$

$$Volume = 3\sqrt{3}a^{2} \times h$$

$$rea \quad of \ regular \quad hexagm = 6 \times area \quad of \ eguilateral \quad triangle)$$

$$= 6 \times \sqrt{3}a^{2} = 3\sqrt{3}a^{2}$$

d

CDS 1 2025

MENSURATION 30 CLASS 3

ISSBCrack

NAVJYOTI SIR

