

MATRICES & DETERMINANTS **CLASS 1**

ISSBCrack

Irack

8:00AM -	19 NOVEMBER 2024 DAILY CURRENT AFFAIRS	RUBY MA'AM
9:00AM	19 NOVEMBER 2024 DAILY DEFENCE UPDATES	DIVYANSHU SIR

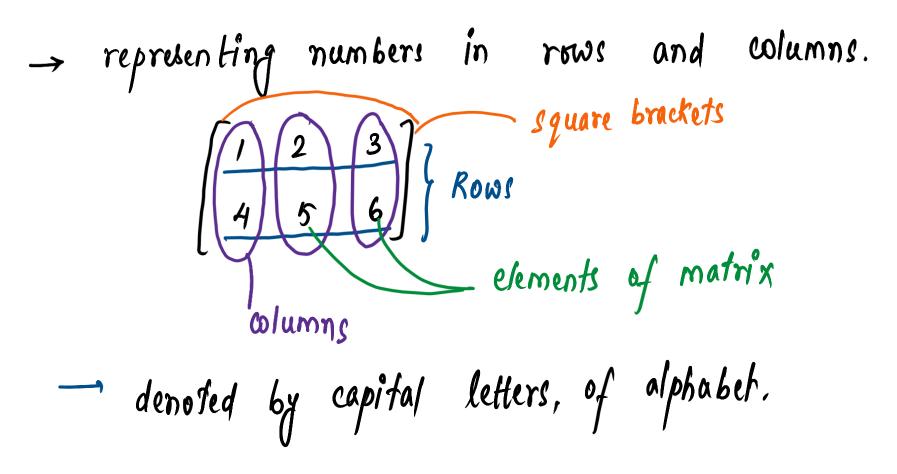
NDA 1 2025 LIVE CLASSES

11:30AM	GK - ECONOMICS - CLASS 2	RUBY MA'AM
1:00PM -	GS - CHEMISTRY MCQ - CLASS 10	SHIVANGI MA'AM
4:30PM	ENGLISH - PREPOSITIONS & DETERMINERS - CLASS 1	ANURADHA MA'AM
5:30PM	MATHS - MATRICES & DETERMINANTS - CLASS 1	NAVJYOTI SIR

CDS 1 2025 LIVE CLASSES

11:30AM	GK - ECONOMICS - CLASS 2	RUBY MA'AM
1:00PM	GS - CHEMISTRY MCQ - CLASS 10	SHIVANGI MA'AM
4:30PM	ENGLISH - PREPOSITIONS & DETERMINERS - CLASS 1	ANURADHA MA'AM
7:00PM	MATHS - SPEED DISTANCE TIME - CLASS 1	NAVJYOTI SIR

MATRIX

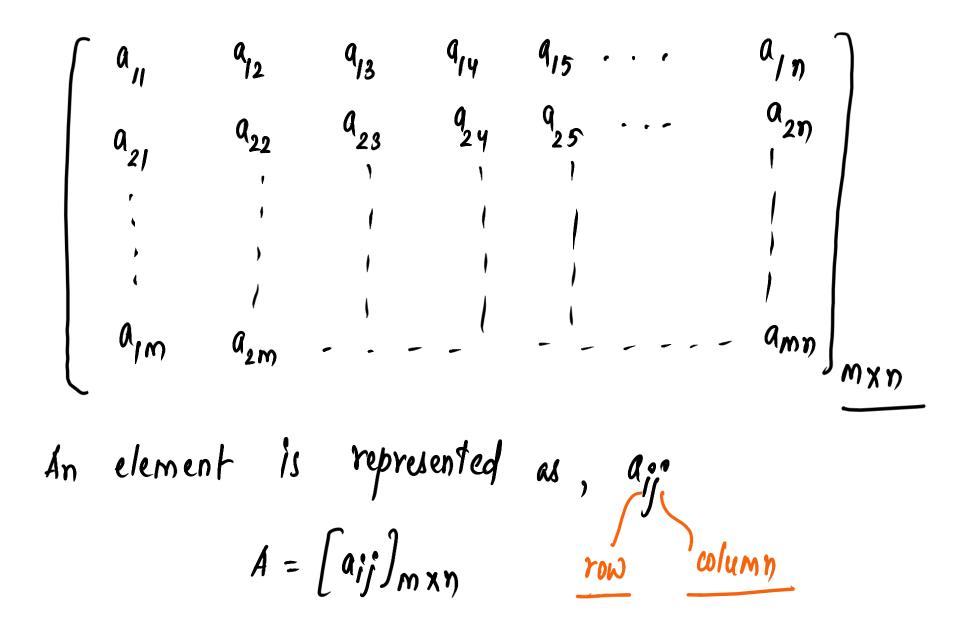


ORDER OF A MATRIX

$$\rightarrow \text{ number of rows x number of columns for a matrix.}$$

$$A = \left[\begin{array}{c} 1 & 2 & 3 \\ \hline 4 & 5 & 6 \end{array} \right] \int_{n=3}^{m=2} m=3$$

$$\text{Order of } A, \quad O(A) = 2 \times 3$$



TYPES OF MATRICES

ROW MATRIX:
$$only 1 row$$
.
 $\left[1 2 3 4 \right]_{1 \times 4}$ order = 1 \times 19

COLUMN MATRIX:
$$\frac{\partial n}{\partial y} 1$$
 column.

$$\begin{pmatrix} a \\ b \\ c \\ -3x \end{pmatrix}$$
Order = $\frac{mx}{3x}$

TYPES OF MATRICES

SQUARE MATRIX: number of rows = number of columns

$$\begin{cases}
2 & 3 & 9 \\
7 & 6 & 5 \\
4 & 3 & -2
\end{cases}$$

$$\begin{cases}
p & 2 \\
r & 5
\end{pmatrix}_{2x2}$$

$$\begin{bmatrix}
0 \\
1x_1
\end{bmatrix}$$

$$\frac{Square matrix of order 3}{1x_1}$$

$$\frac{Square matrix of order 3}{1x_1}$$

$$\frac{Square matrix s called 'rectangular'}{1x_1}$$

TYPES OF MATRICES

DIAGONAL MATRIX: Square matrix with non-diagonal elements = 0. $\left[\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array}\right]$ $\left[\begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array}\right]$ $\left[\begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array}\right]$ $\left[\begin{array}{c} 0 \\ \end{array}\right]$ $\left[\begin{array}{c} 0 \\ \end{array}\right]$ $\left[\begin{array}{c} 0 \\ \end{array}\right]$ $\left[\begin{array}$ not diagmals for matrix **SCALAR MATRIX:** Diagonal matrix with diagonal elements being same (scalar -> constant) $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$

TYPES OF MATRICES

IDENTITY / UNIT MATRIX :

scalar matrix with constant = 1.

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{bmatrix}
1 & 0 \\
0 & 1 & 1 \\
-3 \times 3
\end{bmatrix}$$

$$\begin{array}{c}
1 & 0 \\
0 & 1 & 1 \\
-3 \times 3
\end{array}$$

$$\begin{array}{c}
1 & 0 \\
0 & 1 & 1 \\
-3 \times 3
\end{array}$$

$$\begin{array}{c}
1 & 0 \\
0 & 1 & 1 \\
-3 \times 3
\end{array}$$

$$\begin{array}{c}
1 & 0 \\
0 & 1 & 1 \\
-3 \times 3
\end{array}$$

$$\begin{array}{c}
1 & 0 \\
0 & 1 & 1 \\
-3 \times 3
\end{array}$$

$$\begin{array}{c}
1 & 0 \\
0 & 1 & 1 \\
-3 \times 3
\end{array}$$

$$\begin{array}{c}
1 & 0 \\
0 & 1 & 1 \\
-3 \times 3
\end{array}$$

$$\begin{array}{c}
1 & 0 \\
0 & 1 & 1 \\
-3 \times 3
\end{array}$$

$$\begin{array}{c}
1 & 0 \\
0 & 1 & 1 \\
-3 \times 3
\end{array}$$

$$\begin{array}{c}
1 & 0 \\
0 & 1 & 1 \\
-3 \times 3
\end{array}$$

$$\begin{array}{c}
1 & 0 \\
0 & 1 & 1 \\
-3 \times 3
\end{array}$$

$$\begin{array}{c}
1 & 0 \\
0 & 1 & 1 \\
-3 \times 3
\end{array}$$

$$\begin{array}{c}
1 & 0 \\
0 & 1 & 1 \\
-3 \times 3
\end{array}$$

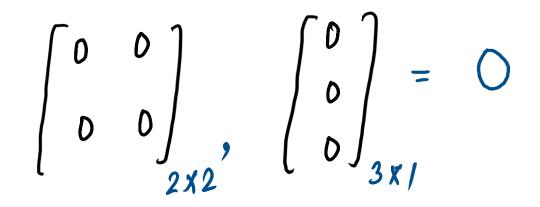
$$\begin{array}{c}
1 & 0 \\
0 & 1 & 1 \\
-3 \times 3
\end{array}$$

$$\begin{array}{c}
1 & 0 \\
0 & 1 & 1 \\
-3 \times 3
\end{array}$$

$$\begin{array}{c}
1 & 0 \\
0 & 1 & 1 \\
-3 \times 3
\end{array}$$

TYPES OF MATRICES

ZERO MATRIX :

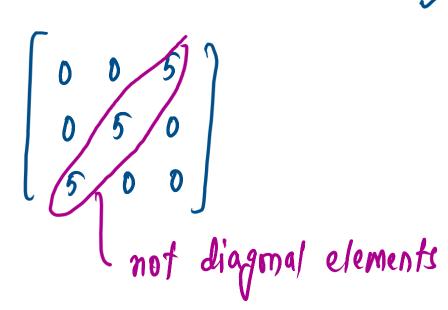


EXAMPLE

The matrix
$$A = \begin{bmatrix} 0 & 0 & 5 \\ 0 & 5 & 0 \\ 5 & 0 & 0 \end{bmatrix}$$
 is a

(A) scalar matrix(C) unit matrix

(B) diagonal matrix(D) square matrix



EQUALITY OF TWO MATRIX

For two matrix to be equal,
(1) order of both should be same.
(3) corresponding elements are equal.

$$\begin{pmatrix} 3 & 4 & 5 \\ 6 & 2 & 8 \end{pmatrix} = \begin{pmatrix} a & b & e \\ d & e & f \end{pmatrix} = \begin{cases} a & b & e \\ d & e & f \end{pmatrix} = \begin{cases} a & b & e \\ d & e & f \end{pmatrix} = \begin{cases} a & b & e \\ c & z & f & z \\ r & z & z & z \\ r & z & z \\ r & z & z & z$$

ADDITION AND SUBTRACTION OF TWO MATRIX

$$det A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}_{2\times 3} \qquad B = \begin{pmatrix} 2 & 3 & 4 \\ 4 & 7 & 8 \end{pmatrix}_{2\times 3}$$

$$A + B = \begin{cases} defined & only & when \\ A - B = \begin{pmatrix} A & and & B & are & of & the \\ Same & order \end{cases} \qquad A + B = \begin{cases} 1+2 & 2+3 & 3+4 \\ 4+9 & 5+7 & 6+8 \end{pmatrix}_{2\times 3}$$

$$A - B = \begin{cases} 1-2 & 2-3 & 3-4 \\ 4-9 & 5-7 & 6-8 \end{pmatrix}_{2\times 3}$$

$$Sum & or & difference \\ Same & order \end{cases}$$

MULTIPLICATION OF MATRIX BY SCALAR

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}_{2 \times 3}$$

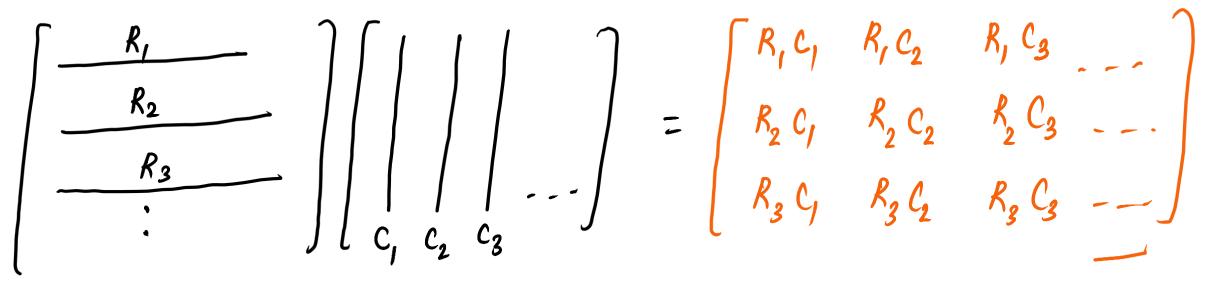
$$3A = 3 \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 3 \times 1 & 3 \times 2 & 3 \times 3 \\ 3 \times 4 & 3 \times 5 & 3 \times 6 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 6 & 9 \\ 12 & 15 & 18 \end{bmatrix}_{2 \times 3}$$

MULTIPLICATION OF MATRICES

If
$$A = \begin{bmatrix} 1 & 4 & 2 \\ 2 & 3 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 \\ 2 & 2 \\ 1 & 3 \end{bmatrix}$
 $A \cdot B = \begin{bmatrix} 1 & 4 & 2 \\ 2 & 3 & 1 \\ 2 & 3 & 1 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 1x_1 + 4x_2 + 2x_1 & 1x_2 + 4x_2 + 2x_3 \\ 3x_1 + 3x_2 + 1x_1 & 3x_2 + 3x_2 + 1x_3 \end{bmatrix}$
 $a_{x3} = \begin{bmatrix} 3x_2 & 3x_3 & 3x_2 & 3x_3 & 3x_$

MULTIPLICATION OF MATRICES



EXAMPLE

If
$$\begin{bmatrix} 2x & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -3 & 0 \end{bmatrix} \begin{bmatrix} x \\ 8 \end{bmatrix} = 0$$
, find the value of x.

$$\begin{bmatrix} 2x & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -3 & 0 \end{bmatrix} = \begin{bmatrix} 3x & x/ + 3(-3) & 3x & (2) + 3(0) \end{bmatrix}$$

$$= 7 \begin{bmatrix} 2x - 9 & 4x \end{bmatrix} \begin{bmatrix} 2 \\ 8 \end{bmatrix} = 0$$

$$= 7 \begin{bmatrix} 2x - 9 & 4x \end{bmatrix} \begin{bmatrix} 2 \\ 8 \end{bmatrix} = 0$$

$$= 7 \begin{bmatrix} (3x - 9)(x) + 8(4x) \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix} = 3x^2 - 9x + 32x = 0$$

$$\frac{2}{3}\chi^{2} - \frac{9}{3}\chi + \frac{32}{3}\chi = 0$$
$$\chi \left(\frac{2}{3}\chi + \frac{23}{3} \right) = 0$$
$$\chi = 0$$
$$\chi = 0$$
$$\chi = -\frac{23}{2}$$

PROPERTIES

If AB is defined, then BA need not be defined.

If A, B are, respectively $m \times n$, $k \times l$ matrices, then both AB and BA are defined if and only if n = k and l = m.

If AB and BA are both defined, it is not necessary that AB = BA.

PROPERTIES

If the product of two matrices is a zero matrix, it is not necessary that one of the matrices is a zero matrix.

For three matrices A, B and C of the same order, if A = B, then AC = BC, but converse is not true.

A.
$$A = A^2$$
, A. A. $A = A^3$, so on
 $A^2 \cdot A = A^3$

EXAMPLE

If A and B are square matrices of the same order, then (A + B) (A – B)

is equal to

(A)
$$A^2 - B^2$$
 (B) $A^2 - BA - AB - B^2$
(C) $A^2 - B^2 + BA - AB$ (D) $A^2 - BA + B^2 + AB$

$$(A+B)(A-B) = A \cdot A - A \cdot B + B \cdot A - B \cdot B$$
$$= A^{2} - AB + BA - B^{2}$$
Cannot be cancelled
as AB \not BA

TRANSPOSE OF A MATRIX



PROPERTIES

 $(\mathbf{A}^{\mathrm{T}})^{\mathrm{T}} = \mathbf{A},$

 $(kA)^{T} = kA^{T}$ (where k is any constant)

PROPERTIES

 $(A+B)^{T} = A^{T} + B^{T}$

 $(AB)^{T} = B^{T} A^{T}$

SYMMETRIC MATRIX

$$\begin{array}{cccc} & & & & A^{T} = A \\ A = & \begin{pmatrix} 4 & 5 & 6 \\ 5 & 3 & 2 \\ 6 & 2 & 4 \end{pmatrix} \implies A^{T} = & \begin{pmatrix} 4 & 5 & 6 \\ 5 & 3 & 2 \\ 6 & 2 & 4 \end{pmatrix}$$

SKEW - SYMMETRIC MATRIX

*
$$A^{T} = -A$$

* diagraal elements are 0.
 $A = \begin{pmatrix} 0 & 3 & 4 \\ -3 & 0 & 6 \\ -9 & -6 & 0 \end{pmatrix} \xrightarrow{Transpose} \begin{pmatrix} 0 & -3 & -4 \\ 3 & 0 & -6 \\ 4 & 6 & 0 \end{pmatrix} = -A$
(negative of all elements in A)

Any square matrix A can be expressed as the sum of a symmetric matrix and a skew symmetric matrix, that is

$$A = \frac{(A + A^{T})}{2} + \frac{(A - A^{T})}{2}$$

INVERTIBLE MATRIX

If A is a square matrix of order m x m, and if there exists another square matrix

B of the same order m x m, such that $AB = BA = I_m$, then, A is said to be

invertible matrix and B is called the inverse matrix of A and it is denoted by A⁻¹

INVERTIBLE MATRIX

A rectangular matrix does not possess its inverse, since for the products BA and AB to be defined and to be equal, it is necessary that matrices A and B should be square matrices of the same order.

If B is the inverse of A, then A is also the inverse of B.

INVERTIBLE MATRIX

$$\rightarrow$$
 The inverse is unique for a given matrix.
 $\rightarrow ((AB)^{-1} = B^{-1}A^{-1})$

MATRICES & DETERMINANTS **CLASS 2**

ISSBCrack

Irack

