

SEOUENCE & ERIES **CLASS 2**

ISSBCrack

Crack

_	14 Nov 2024 Live Classes Schedule		
8:00AM	14 NOVEMBER 2024 DAILY CURRENT AFFAIRS	RUBY MA'AM	
9:00AM	14 NOVEMBER 2024 DAILY DEFENCE UPDATES	DIVYANSHU SIR	
	SSB INTERVIEW LIVE CLASSES		
9:30AM	OVERVIEW OF GPE & PRACTICE SESSION	ANURADHA MA'AM	
	NDA 1 2025 LIVE CLASSES		
11:30AM	GK - MODERN HISTORY - CLASS 5	RUBY MA'AM	
1:00PM	CHEMISTRY MCQ - CLASS 7	SHIVANGI MA'AM	
4:00PM	MATHS - SEQUENCE & SERIES - CLASS 2	NAVJYOTI SIR	
5:30PM	ENGLISH - SENTENCE COMPLETION - CLASS 1	ANURADHA MA'AM	

CDS 1 2025 LIVE CLASSES

11:30AM	GK - MODERN HISTORY - CLASS 5	RUBY MA'AM
1:00PM -	CHEMISTRY MCQ - CLASS 7	SHIVANGI MA'AM
5:30PM -	ENGLISH - SENTENCE COMPLETION - CLASS 1	ANURADHA MA'AM
7:00PM	MATHS - MENSURATION 3D - CLASS 2	NAVJYOTI SIR

If the sum of *n* terms of an A.P. is given by

 $S_n = 3n + 2n^2$, then the common difference of the A.P. is (A) 3 (B) 2 (C) 6 (D) 4 $S_{1} = 3 \times 1 + 2 \times (1)^{2} = (5) = 0$ (first term) $S_2 = 3x^2 + 2x(2)^2 = 6 + 8 = 14 = a_1 + a_2 \implies a_2 = 14 - 5 = (9)$ $\alpha + q = 9$ 5 + q = 9

The third term of G.P. is 4. The product of its first 5 terms is (A) 4^3 (B) 4^4 (C) 4^5 (D) None of these $a_n = ar^{n-1}$ $q_1 \cdot q_2 \cdot q_3 \cdot q_4 \cdot q_5 = ?$ a (ar) (ar²) (ar³) (ar⁴) $a^{5}r'^{+2+3+\gamma} = a^{5}r'^{0} = (ar^{2})^{5}$ = 45

.

QUESTION

If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is

(A) 3 (B)
$$\frac{1}{3}$$
 (C) 2 (D) $\frac{1}{2}$ (common ratio
 $a'(2y) = \chi + 3z$ $f'^2 = \chi z$
 $4y = \chi + 3z$ $f'^2 = \frac{\chi}{3}(4y - \chi)$
 $4y - \chi = 3z$ $3y^2 = 4\chi y - \chi^2$
 $\frac{1}{3}(4y - \chi) = z$ $3y^2 + \chi^2 = 4\chi y$
 $\frac{3}{4}(\frac{4}{\chi}) + \frac{1}{4\chi y} = 1$

.

SSBCrack

 $\frac{3}{4}\left(\frac{4}{x}\right) + \frac{1}{4x} = 1$ $3r^2 - 4r + 1 = 0$ 28 $\frac{3}{4}(r) + \frac{1}{4r} = 1$ (A) 3 $\begin{array}{c} (6) \frac{1}{3} \\ (c) 2 \end{array} \right| put optims and check$ $\frac{3r}{4} + \frac{1}{4r} = 1$ 3r² + 1 = 1 Hr

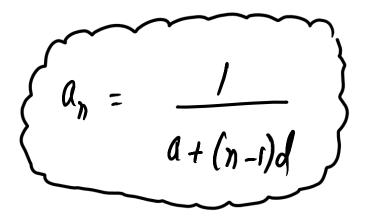
HARMONIC PROGRESSION (HP)

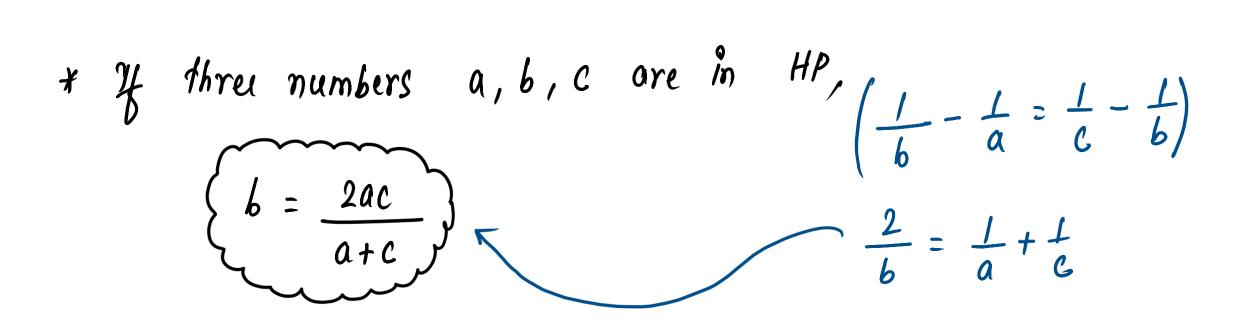
$$\rightarrow \frac{\gamma}{6} \qquad a_1 \quad a_2 \quad a_3 \quad \dots \quad a_n \quad \text{are in } AP,$$

$$\text{then} \quad \frac{1}{q_1} \quad \frac{1}{q_2} \quad \frac{1}{q_3} \quad \dots \quad \frac{1}{q_n} \quad \text{is in } HP.$$

common difference =
$$\frac{1}{q_2} - \frac{1}{q_1}$$

GENERAL TERM





The fifth term of the H.P., 2, $2\frac{1}{2}$, $3\frac{1}{3}$, will be (a) $5\frac{1}{5}$ (b) $3\frac{1}{5}$ (c) $\frac{1}{10}$ (d) 10 $HP \longrightarrow 2, \frac{5}{2}, \frac{10}{3}, \dots$ Pifth term of AP $AP \rightarrow \frac{1}{3}, \frac{2}{5}, \frac{10}{3}$ a + 4 d $\frac{1}{a} + 4\left(\frac{-1}{10}\right) = \frac{1}{a} - \frac{2}{5}$ $a = \frac{1}{2}$, $d = \frac{2}{5} - \frac{1}{2} = \frac{4-5}{10} = \left(-\frac{1}{10}\right)$ reciprocal will be term in $HR^{2} = \frac{5-9}{10} = (\frac{1}{10})$

HARMONIC MEAN (HM)

For two positive numbers
$$a \ b$$
,
 $HM = \frac{2ab}{a+b}$

AM, GM AND HM

For 2 numbers a and b,

$$\frac{a+b}{a} > \sqrt{ab} > \frac{2ab}{a+b}$$

(GM) $\frac{a+b}{a+b}$
(HM)

SPECIAL SERIES AND SUM

(i) Sum of first 'n' derms:

$$1 + 2 + 3 + 4 + \dots n = \frac{n(n+1)}{d}$$

 $1 + 2 + 3 + 4 + \dots n = \frac{n(n+1)}{d}$
 $1 + 2 + 3 + 4 \dots n = \frac{10(11)}{d} = 55$
(3) Sum of first 'n' squares:
 $1^{2} + 2^{2} + 3^{2} + 4^{2} \dots + n^{2} = n(n+1)(2n+1)$
 $1^{2} + 1^{2} + 5^{2} + 4^{2} = \frac{4(5)(9)}{6} = 30$

(3) Sum of first 'n' cubes ;

$$1^{3} + 2^{3} + 3^{3} + ... n^{3} = \frac{n^{2} (n+1)^{2}}{4} = \left[\frac{n (n+1)}{3}\right]^{2}$$

(Square of sum for first 'n' terms)

$$/^{3} + 2^{3} + 3^{3} = 36 = \left(\frac{3(4)}{2}\right)^{2} = 6^{2} = \frac{36}{2}$$

$$5^{2} + 6^{2} + 3^{2} + 8^{2}$$

$$= \left(1^{2} + 2^{3} + 3^{2} + \dots + 8^{2} \right) - \left(1^{2} + 2^{2} + 9^{2} + 4^{2} \right)$$

$$= \frac{8(9)(13)}{6} - \frac{4(5)(9)}{6} = \frac{4(5)(9)}{6} = \frac{13}{6}$$

SPECIAL SERIES AND SUM

-> find an for series.

 $S_n = \leq a_n$

 $a_n = pn^3 + qn^2 + Cn + d$ $S_n = \leq a_n = \leq (pn^3 + qn^2 + cn + d)$ $= p \leq n^{3} + q \leq n^{2} + c \leq n + d \leq l$ $= p\left(\frac{n(n+1)}{2}\right)^{2} + q \frac{n(n+1)(2n+1)}{4} + C \frac{n(n+1)}{2} + dn$

If p^2 , q^2 and r^2 (where p, q, r > 0) are in GP, then which of the following is/are correct?

- 1. p, q and r are in GP.
- $\ln p$, $\ln q$ and $\ln r$ are in AP. 2.

Select the correct answer using the code given below :

(a) 1 only

(b) 2 only

- (c) Both 1 and 2 (d) Neither 1 nor 2

 $\frac{q^2}{p^2} = \frac{r^2}{q^2} \implies \left(\frac{q}{p}\right)^2 = \left(\frac{r}{q}\right)^2 \implies \frac{q}{p} = \frac{r}{q} \quad \left(\frac{q}{p} \neq -\frac{r}{q} \text{ as } p, q, r \neq 0\right)$ $\implies q^2 = pr \longrightarrow p, q, r \text{ are in } GP,$

PYQ – 2020

Inp lng lnr a, b, c in AP lnq - lnp = lnr - lnq (b-a=c-b) $ln\left(\frac{q}{p}\right) = ln\left(\frac{r}{q}\right)$ $lnx - lny = ln\left(\frac{x}{y}\right)$ $\frac{q}{p} = \frac{r}{q}$ $g^2 = pr \Rightarrow p_1 q_1 r$ in $GP \Rightarrow p^2, q^2$ and r^2 in GP.

If a, b, c are in AP; b, c, d are in GP; c, d, e are in HP, then which of the following is/are correct?

1. *a*, *c* and *e* are in GP
$$\rightarrow (c^2 = ae)$$

2. $\frac{1}{a}, \frac{1}{c}, \frac{1}{e}$ are in GP

Select the correct answer using the code given below :

(a) 1 only

- (b) 2 only
- (c) Both 1 and 2
- (d) Neither 1 nor 2

$$ab = a + c$$
$$c^{2} = bd$$
$$d = \underline{2ce}$$
$$c + e$$

 $C^{\not a} = b / \underline{2 \ell e}$

PYQ - 2024 - I

 $\begin{cases} \frac{2}{5} P, 2, r \text{ are in } GP, \\ \Rightarrow \frac{1}{p}, \frac{1}{2}, \frac{1}{r} \text{ are also} \\ in & GP. \end{cases}$

$$c^{2} + ce = 2be \longrightarrow c^{2} + ce = (a+c)e$$

$$c^{2} + ce = ae + ce \Rightarrow (c^{2} = ae)$$

QUESTION

- If a, b and c (a > 0, c > 0) are in GP, then consider the following in respect of the equation $ax^2 + bx + c = 0$:
 - 1. The equation has imaginary roots.
 - 2. The ratio of the roots of the equation is $1: \omega$ where ω is a cube root of unity.
 - 3. The product of roots of the

equation is $\left(\frac{b^2}{a^2}\right)$.

2

PYQ – 2024 - I

Which of the statements given above are correct?

(a) 1 and 2 only

(b) 2 and 3 only

(c) 1 and 3 only

(d) 1, 2 and 3

 $b^2 = ac$ $ax^2 + bx + c = 0$ $D = b^2 - 4ac$ = ac - Hac-3ac < 0

(a > 0, c > 0)

SSBCrack

 $-6 \pm$ -3ac $b^2 - 4ac$ Jac ±√ Jac 2a 20

-

$$\frac{-\sqrt{ac}\left(\frac{1+\sqrt{-3}}{2}\right)}{a} = -\frac{b}{a}\omega; \quad -\frac{b}{a}\omega^{2}$$

$$w = -1+\sqrt{3}i^{\circ} \qquad \omega^{2} = -1-\sqrt{3}i^{\circ}$$

$$\frac{w^{2}}{2} = -1-\sqrt{3}i^{\circ}$$

$$(i = \sqrt{-1})$$

$$\frac{-\frac{b}{a}\omega}{-\frac{b}{a}\omega^{2}} = (1:\omega)$$

$$\frac{-\frac{b}{a}\omega^{2}}{-\frac{b}{a}\omega^{2}} = (1:\omega)$$

$$\frac{(1+\omega)^{2}}{-\frac{b}{a}\omega^{2}} = (1+\omega)^{2}$$

$$\frac{-\frac{b}{a}\omega^{2}}{-\frac{b}{a}\omega^{2}} = (1+\omega)^{2}$$

$$\frac{(1+\omega)^{2}}{-\frac{b}{a}\omega^{2}} = (1+\omega)^{2}$$

$$\frac{1}{q+r}, \frac{1}{r+p}, \frac{1}{p+q} \text{ are in A.P. then,}$$
(a) $p, q, r \text{ are in A.P}$ (b) $p^2, q^2, r^2 \text{ are in A.P}$
(c) $\frac{1}{p}, \frac{1}{q}, \frac{1}{r} \text{ are in A.P}$ (d) $p+q+r \text{ are in A.P}$
 $\frac{1}{r+p} - \frac{1}{q+r} = \frac{1}{p+q} - \frac{1}{r+p}$
 $\frac{q-p}{(r+p)(q+r)} = \frac{r-q}{(p+q)(r+p)} = -(p-q)(r)$
 $qq^2 = 1$

$$-(p-q)(p+q) = (r+q)(r-q)$$

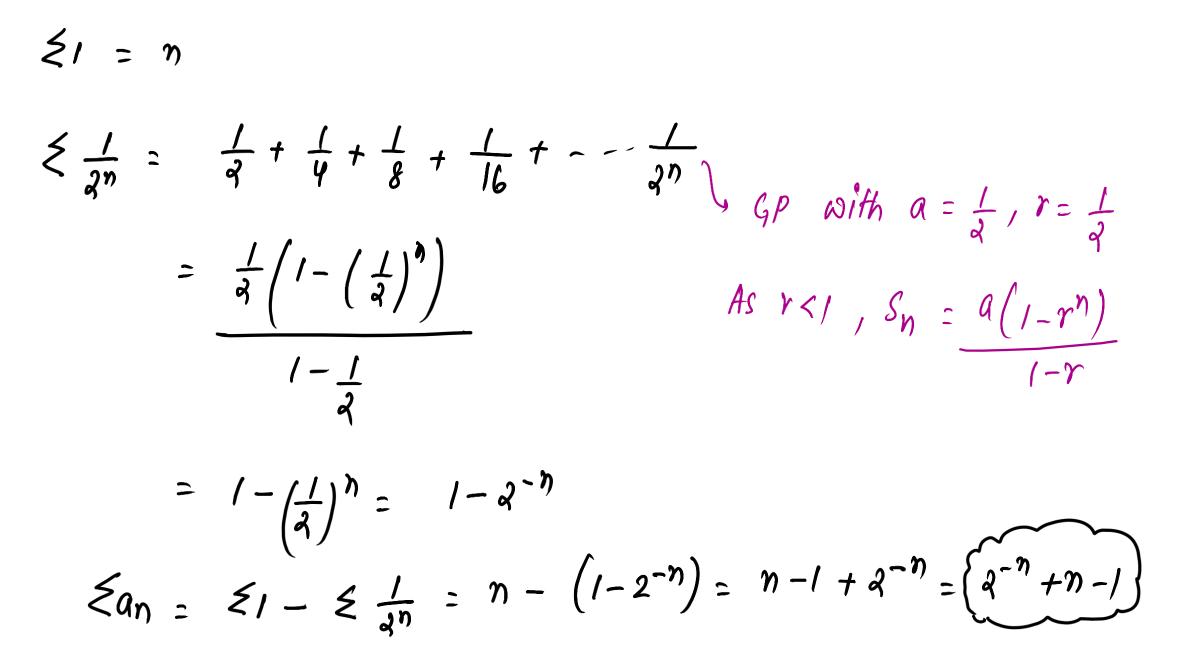
$$-(p^{2}-q^{2}) = r^{2}-q^{2}$$

$$\frac{2q^{2}}{2} = r^{2}+p^{2} \Rightarrow p^{2}, q^{2}, r^{2} \text{ are in } Ap$$

The sum of the first n terms of the series

 $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} + \dots$ is equal to (a) $2^n - n - 1$ (b) $1 - 2^{-n}$ (c) $2^{-n} + n - 1$ (d) $2^n - 1$ $= 1 - \frac{1}{2^n} = a_n$ $S_n = \xi a_n = \xi \left(1 - \frac{1}{2^n} \right) = \xi 1 - \xi \frac{1}{2^n}$

SSBCrack



SEOUENCE & **CLASS 3**

ISSBCrack

Crack

