

5 Nov 2024 Live Classes Schedule

05 NOVEMBER 2024 DAILY CURRENT AFFAIRS (8:00AM **RUBY MA'AM**

DIVYANSHU SIR 9:00AM **05 NOVEMBER 2024 DAILY DEFENCE UPDATES**

SSB INTERVIEW LIVE CLASSES

9:30AM **OVERVIEW OF GD & LECTURETTE** ANURADHA MA'AM

NDA 1 2025 LIVE CLASSES

GK - MEDIEVAL HISTORY - CLASS 1 11:30AM **RUBY MA'AM**

1:00PM **CHEMISTRY MCQ - CLASS 3** SHIVANGI MA'AM

4:00PM MATHS - VECTOR ALGEBRA - CLASS 2 **NAVJYOTI SIR**

> ANURADHA MA'AM ENGLISH - ORDERING OF WORDS - CLASS 2

CDS 1 2025 LIVE CLASSES

GK - MEDIEVAL HISTORY - CLASS 1 RUBY MA'AM 11:30AM

1:00PM **CHEMISTRY MCQ - CLASS 3** SHIVANGI MA'AM

5:30PM **ENGLISH - ORDERING OF WORDS - CLASS 2** ANURADHA MA'AM

NAVJYOTI SIR MATHS - GEOMETRY - CLASS 1 7:00PM

AFCAT 1 2025 LIVE CLASSES

STATIC GK - COUNTRY CAPITAL CURRENCY - CLASS 1 **DIVYANSHU SIR**

ENGLISH - ORDERING OF WORDS - CLASS 2

5:30PM

4:00PM

5:30PM

QUESTION

The 2 vectors $\hat{j} + \hat{k}$ and $3\hat{i} - \hat{j} + 4\hat{k}$ represents the two sides AB and AC, respectively of a \triangle ABC. The length of the median through A is

PROJECTION / M

projection of
$$\vec{b}$$
 on dine $M = \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|} = \vec{b} \cdot \vec{a}$

PROPERTIES – VECTOR PRODUCT

If \vec{a} and \vec{b} represent adjacent sides of a parallelogram, then its area $|\vec{a} \times \vec{b}|$

If \vec{a} , \vec{b} represent the adjacent sides of a triangle, then its area = $\frac{1}{2} |\vec{a} \times \vec{b}|$

$$= \sqrt{\vec{a}' \times \vec{b}} /$$

= absino

PROPERTIES – VECTOR PRODUCT

Distributive property
$$\underline{\vec{a}} \times (\underline{\vec{b}} + \underline{\vec{c}}) = \underline{\vec{a}} \times \underline{\vec{b}} + \underline{\vec{a}} \times \underline{\vec{c}}$$

If
$$\alpha$$
 be a scalar, then $\alpha (\vec{a} \times \vec{b}) = (\alpha \vec{a}) \times \vec{b} = \vec{a} \times (\alpha \vec{b})$

(number)

PROPERTIES – VECTOR PRODUCT

If
$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$$
, and $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$

Then,
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \hat{i} \left(q_3 b_3 - q_3 b_4 \right) - \hat{j} \left(a_1 b_3 - a_3 b_1 \right) + \hat{k} \left(q_1 b_2 - q_2 b_1 \right)$$

$$(\vec{a} \times \vec{b}) \cdot \vec{c} = [\vec{a} \vec{b} \vec{c}] = \vec{c} \cdot (\vec{a} \times \vec{b})$$

$$(\vec{b} \times \vec{c}) \cdot \vec{a} = [\vec{b} \vec{c} \vec{a}]$$

$$(\vec{c} \times \vec{a}) \cdot \vec{b} = [\vec{c} \vec{a} \vec{b}]$$

$$(\vec{c} \times \vec{a}) \cdot \vec{b} = [\vec{c} \vec{a} \vec{b}]$$

$$(\vec{c} \times \vec{a}) \cdot \vec{b} = [\vec{c} \vec{a} \vec{b}]$$

$$(\vec{c} \times \vec{a}) \cdot \vec{b} = [\vec{c} \vec{a} \vec{b}]$$

If three vectors \mathbf{a} , \mathbf{b} and \mathbf{c} are collinear, then $[\mathbf{a} \ \mathbf{b} \ \mathbf{c}] = 0$.

$$[\mathbf{a} \ \mathbf{b} \ \mathbf{c} + \underline{\mathbf{d}}] = [\mathbf{a} \ \mathbf{b} \ \mathbf{c}] + [\mathbf{a} \ \mathbf{b} \ \mathbf{d}]$$

$$[\mathbf{\underline{a}} + \mathbf{\underline{b}} \mathbf{b} + \mathbf{\underline{c}} \mathbf{c} + \mathbf{\underline{a}}] = 2 [\mathbf{a} \mathbf{b} \mathbf{c}]$$

$$[\mathbf{a} - \mathbf{b} \ \mathbf{b} - \mathbf{c} \ \mathbf{c} - \mathbf{a}] = \underbrace{\mathbf{0}}_{}$$

$$[\mathbf{a} \times \mathbf{b} \ \mathbf{b} \times \mathbf{c} \ \mathbf{c} \times \mathbf{a}] = [\mathbf{a} \ \mathbf{b} \ \mathbf{c}]^2$$

volume of parallelopiped =
$$(\vec{a}, \vec{b}, \vec{c})$$

If any two of the vectors \vec{a} , \vec{b} , \vec{c} are equal, then $\left[\vec{a}\ \vec{b}\ \vec{c}\right] = 0$ The value of a scalar triple product is zero, if two of its vectors are parallel.

The value of a scalar triple product is zero, if two of its vectors are parallel.

 \vec{a} , \vec{b} , \vec{c} are coplanar if and only if $[\vec{a} \ \vec{b} \ \vec{c}] = 0$

Four points A, B, C, D with position vectors \vec{a} , \vec{b} , \vec{c} , \vec{d} respectively are coplanar if and only if $[\overline{AB} \ \overline{AC} \ \overline{AD}] = 0$ i.e. if and only if $[\overline{b} - \overline{a} \ \overline{c} - \overline{a} \ \overline{d} - \overline{a}] = 0$

Tetrahedron (volume) =
$$\frac{1}{6} \left[\vec{a} \vec{b} \vec{c} \right]$$

Triangular prism, (volume) =
$$\frac{1}{2} \left[\vec{a} \cdot \vec{b} \cdot \vec{c} \right]$$

VECTOR TRIPLE PRODUCT

$$\vec{a}$$
 \times \vec{b} \times \vec{c}

$$(\vec{a} \times \vec{b}) \times \vec{c}$$

$$\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{C})$$

VECTOR TRIPLE PRODUCT

 $\vec{a} \times (\vec{b} \times \vec{c})$ is a vector perpendicular to \vec{a} and lies in the plane of vectors \vec{b} and \vec{c}

$$\vec{a} \times (\vec{b} \times \vec{c}) \neq (\vec{a} \times \vec{b}) \times \vec{c}$$

$$\vec{a} \times (\vec{b} \times \vec{c}) \neq (\vec{a} \times \vec{b}) \times \vec{c}$$

VECTORS IN MECHANICS

Let a particle be placed at O and a force \mathbf{F} represented by \mathbf{OB} be acting on the particle at O. Due to the application of force \mathbf{F} , the particle is displaced in the direction of \mathbf{OA} .

Let **OA** be the displacement **d**.

VECTORS IN MECHANICS

Moment

(a) **About a point** Moment = $\mathbf{r} \times \mathbf{F}$ Where \mathbf{r} be the position vector of any point P and \mathbf{F} be the force about the point O.

VECTORS IN MECHANICS

(b) **About a line** The moment of a force \mathbf{F} acting at a point P about a line L is a scalar given by $(\mathbf{r} \times \mathbf{F}) \cdot \hat{\mathbf{a}}$.

