NDA-CDS 1 2025

8:00AM 21 NOVEMBER 2024 DAILY CURRENT AFFAIRS RUBY MA'AM

9:00AM 21 NOVEMBER 2024 DAILY DEFENCE UPDATES

DIVYANSHU SIR

SSB INTERVIEW LIVE CLASSES

9:30AM — MOCK PERSONAL INTERVIEWS ANURADHA MA'AM

NDA 1 2025 LIVE CLASSES

11:30AM GK - ECONOMICS - CLASS 4 RUBY MA'AM

1:00PM PHYSICS - UNITS & DIMENSIONS - CLASS 1 NAVJYOTI SIR

4:30PM ENGLISH - USAGE OF PAIRED WORDS - CLASS 1 ANURADHA MA'AM

5:30PM MATHS - MATRICES & DETERMINANTS - CLASS 3 NAVJYOTI SIR

CDS 1 2025 LIVE CLASSES

GK - ECONOMICS - CLASS 3 RUBY MA'AM

PHYSICS - UNITS & DIMENSIONS - CLASS 1 NAVJYOTI SIR

4:30PM ENGLISH - USAGE OF PAIRED WORDS - CLASS 1 ANURADHA MA'AM

7:00PM MATHS - SPEED DISTANCE TIME - CLASS 3 NAVJYOTI SIR

SSBCrack EXAMS

Physical Quantities

A measurable quantity.

Example - length, volume, velocity, Force, Frequency, density etc.

PHYSICAL QUANTITY

Fundamental

Derived

Fundamental Quantities

- Those physical quantities which do not depend on other quantities.
- 1. Mass
- 2. Length
- 3. Time,
- 4. Temperature,
- 5. Electric current
- Amount of substance.
- 7. Luminous Intensity
- Plane angle and Solid angle are two supplementary
 Fundamental Quantities.

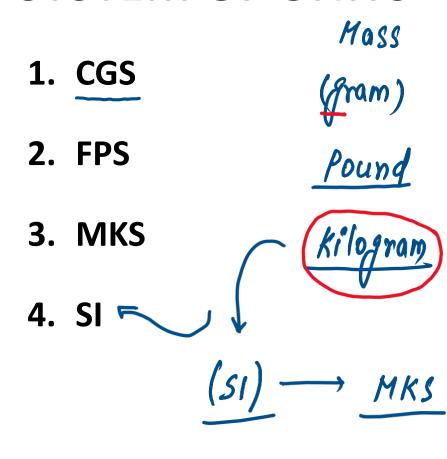
7 + 2 supplementary,

SSBCrack EXAMS

Derived Quantities

The physical quantities which depend on fundamental quantities.

Example - Speed, Force, Voltage, Density etc.


UNITS

- A Standard Amount of a Physical Quantity Chosen to Measure the Physical Quantity of The Same Kind.
- It Should Be Easily Reproducible, Internationally Accepted.

SYSTEM OF UNITS

Metric system

SSBCrack

Fundamental Units

- mole (mol)

Derived Units

Distance
$$\longrightarrow LENGTH - m = m/s \text{ or } ms^{-1}$$
Time $= TIME$

2. Momentum

3. Voltage

kgms⁻²xm

rolts

4. Density, etc.

$$\frac{Mass}{Volume} = \frac{kg}{m^3} = \frac{kg}{m^3} \text{ or } \frac{kgm^{-3}}{m^3}$$

PRACTICAL UNITS

Length:

```
(i) 1 \underbrace{\text{fermi}} = 10^{-15} \text{ m}

(ii) 1 \text{ X-ray unit} = 10^{-13} \text{ m} | Smaller distances
(iii) 1 astronomical unit = 1.49 \times 10^{11} m (average distance between
                                                                                                      sun and earth)
(iv) 1 \text{ light year} = 9.46 \times 10^{15} \text{ m} (distance travelled by Light in / year) 
(v) 1 \text{ parsec} = 3.08 \times 10^{16} \text{ m} = 3.26 \text{ light year}
```

Remember the names.

PRACTICAL UNITS

Mass / Weight

```
1 quintal = 10^2 \text{ kg} = 100 \text{ kg}

1 metric ton = 10^3 \text{ kg} = 1000 \text{ kg}
1 atomic mass unit (amu) or
dalton = 1.66 \times 10^{-27} \text{ kg} \longrightarrow \text{very Small mass}
1 pound = 0.4537 \text{ kg}
       ≈ 0.45 kg
```

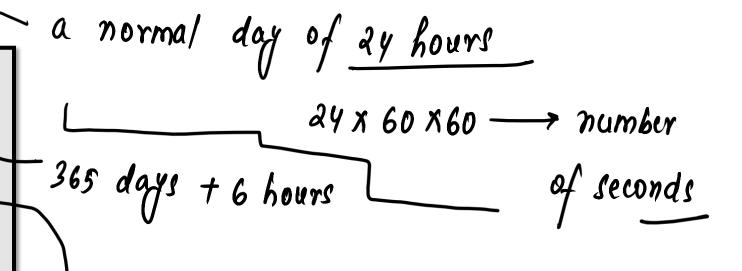
SSBCrack EXAMS

PRACTICAL UNITS

• Time :

1 solar day = 86400 sec.

1 year = $365\frac{1}{4}$ solar days


1 lunar month

= 27.3 solar days

Tropical year = It is the year in which total solar eclipse occurs.

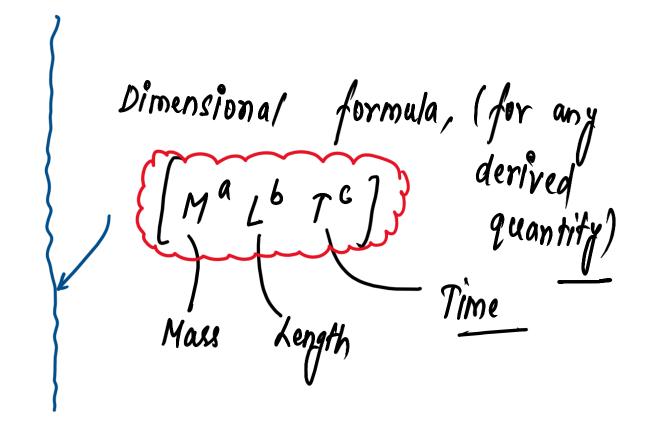
Leap year = It is the year in which the month of February is of 29 days.

366 days

PREFIXES USED

Prefix	Symbol	Multiplier
deci	d	10-1
centi	С	10-2
milli	m	10-3
micro	m	10-6
nano	n	10-9
pico	p	10-12
deca	da	10 ¹
hecto	h	10 ²
kilo	k	103
/mega	M	106

metre $\longrightarrow 10^{\circ} = 1$


Dimensional Analysis

Volume
$$\longrightarrow$$
 $(\text{Kength})^3$

$$\left[M^0 L^3 T^0\right] = \left[L^3\right]$$

$$\frac{1}{\text{Time period}} \Rightarrow \left[M^0 L^0 T^{-1}\right]$$

$$= \left[T^{-1}\right]$$

Density,
$$\frac{Mass}{Volume} = \begin{bmatrix} M^{1} L^{-3} & T^{0} \end{bmatrix} = \begin{bmatrix} ML^{-3} \end{pmatrix} \quad kg \, m^{-3} \\ g \, cm^{-3} \end{bmatrix}$$

$$Velocity \quad --- \quad \begin{bmatrix} M^{0} L^{1} & T^{-1} \end{bmatrix} = \begin{bmatrix} LT^{-1} \end{bmatrix} \quad ms^{-1}$$

$$Accleration \quad --- \quad \begin{bmatrix} LT^{-2} \end{bmatrix} \quad Work \mid Energy \quad --- \quad \begin{bmatrix} ML^{2}T^{-2} \end{bmatrix}$$

$$Force \quad --- \quad \begin{bmatrix} ML & T^{-2} \end{bmatrix}$$

Nime period of =
$$2\pi\sqrt{\frac{1}{g}}$$
 $LHS = [T]$
 RHS
 $L = L$
 LT^{-2}
 LT

CONVERSIONS BETWEEN UNITS

- Measurement Of Physical Quantity = Numerical Value (Number) × Unit
- If u_1 And u_2 Are The Units Of A Physical Quantity In Two Different System Of Units And, n_1 And n_2 Are Their Numerical Values Then,

NDA & CDS 1 2025 - PHYSICS - PART 1

$$6 \times 1000 \times \left(\frac{1 \text{ cm}}{100 \text{ cm}}\right)^3$$

$$\frac{6000 \times 1}{1000000} = \frac{6000}{1000000} = \frac{6 \times 10^{-3}}{1000}$$

$$\chi = 6 \times 10^{-3} = 0.006$$

$$6 kg m^{-3} = 6 \times 10^{-3} g cm^{-3} = 0.006 g cm^{-3}$$

PRECISION AND ACCURACY

- The <u>Accuracy</u> Of A Measurement System Is The Degree Of Closeness Of Measurements Of A Quantity To That Quantity's True Value.
- The <u>Precision</u> Of A Measurement System, Is The Degree To Which Repeated
 Measurements Under Unchanged Conditions Show The Same Results.
- Least Count of Instruments Minimum length that can be measured.

$$\frac{1 \text{ cm}}{10} = 0.7 \text{ cm} = 7 \text{ mm}$$

NDA & CDS 1 2025 - PHYSICS - PART 1

Light year is a unit for measurement of

- (a) age of universe
- (b) very small time intervals
- (c) very high temperature
- (d) very large distance


The unit of the ratio between thrust and impulse is same as that of

- (a) frequency
- (b) speed
- (c) wavelength
- (d) acceleration

force in perpendicular direction

$$\frac{f}{f \times t} = \left(\frac{1}{t}\right) \rightarrow \left[\tau^{-1}\right] \Rightarrow frequency$$

NDA-CDS 1 2025

