CDS12025 LIVE STATISTICS **ISSBCrack CLASS 3 NAVJYOTI SIR** Crack

A frequency distribution is as follows:

Marks	18-26	27-35	36-44	45-53	54-62	63-71	72-80
Number of students	5	7	10	15	8	3	2

PYQ - 2024 - II

$$\frac{2f}{2} = \frac{50}{2} = 25$$

Median class = 44.5 - 53.5

What is the median of the distribution?
$$\frac{18-0.5}{18-0.5} \quad \frac{1}{36+0.5} \quad \frac{1}{36-5} \quad \frac{1}{$$

Median =
$$1 + \left(\frac{n}{a} - cf\right) \times h$$

(c)
$$45.9$$

$$44.5 - 53.5 - 15 - 37$$

$$53.5 - 64.5 - 8 - 45$$

$$62.5 - 21.5 - 3 - 46$$

$$71.5 - 80.5 - 2 - 50 = n = 2f$$

$$= 44.5 + \left(35 - 22\right) \times 9$$

$$= 44.5 + \frac{3}{15} \times 9$$

A frequency distribution is as follows:

Marks	18-26	27-35	36-44	45-53	54-62	63-71	72-80
Number of students	5	7	10	15	8	3	2

What is the median of the distribution?

- (a) 44·9
- (b) 45·5
- (c) 45.9
- (d) 46·3

Ans: (d)

What is the mode of the distribution?

- (a) 47·25
- (b) 47·75
- (c) 48·25
- (d) 48·75

44.5 _ 53.5

A frequency distribution is as follows:

	Marks	18-26	27-35	36-44	45-53	54-62	63-71	72-80
	Number of students	5	7	10/0	15	8 72	3	2
,				,	Moda	/ clas		

Mode =
$$l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

= $44.5 + \left(\frac{15 - 10}{2 \times 15 - 10 - 8}\right) \times 9 = 44.5 + \left(\frac{5}{12}\right) \times 9$

What is the mode of the distribution?

- (a) 47·25
- (b) 47·75
- (c) 48·25
- (d) 48.75

The arithmetic mean of n numbers is M. If the sum of first (n-1) terms is k, then what is the nth number?

- (a) M-k
- (b) nM k
- (c) n(M-k)
- (d) M nk

$$n^{th}$$
 number = sum of n numbers - sum of $(n-1)$ numbers = $nM - k$

The arithmetic mean of n numbers is M. If the sum of first (n-1) terms is k, then what is the nth number?

- (a) M-k
- (b) nM k
- (c) n(M-k)
- (d) M nk

What is the geometric mean of 3, 9, 27, 81, 243, 729, 2187?

- (a) 81
- (b) 105
- (c) 144
- (d) 243

$$a_{1} , a_{2} , a_{3} - - - a_{n}$$

$$GM = (a_{1} a_{2} a_{3} - - - a_{n})^{\frac{1}{n}}$$

$$= (3.3^{2}.3^{3}.3^{4}.3^{5}.3^{6}.3^{7})^{\frac{1}{7}}$$

$$= (3.3^{2}.3^{3}.3^{4}.3^{5}.3^{6}.3^{7})^{\frac{1}{7}}$$

$$= (3.3^{2}.3^{3}.3^{4}.3^{5}.3^{6}.3^{7})^{\frac{1}{7}}$$

$$= (3.3^{2}.3^{3}.3^{4}.3^{5}.3^{6}.3^{7})^{\frac{1}{7}}$$

$$= (3.3^{2}.3^{3}.3^{4}.3^{5}.3^{6}.3^{7})^{\frac{1}{7}}$$

$$= (3.3^{2}.3^{3}.3^{4}.3^{5}.3^{6}.3^{7})^{\frac{1}{7}}$$

$$= (3.3^{2}.3^{3}.3^{4}.3^{5}.3^{6}.3^{6}.3^{7})^{\frac{1}{7}}$$

$$= (3.3^{2}.3^{4}.3^{5}.3^{6}.3^{6}.3^{7})^{\frac{1}{7}}$$

$$= (3.3^{2}.3^{4}.3^{5}.3^{6}.3^{6}.3^{7})^{\frac{1}{7}}$$

$$= (3.3^{2}.3^{4}.3^{5}.3^{6}.3^{6}.3^{7})^{\frac{1}{7}}$$

$$= (3.3^{2}.3^{4}.3^{5}.3^{6}.3^{6}.3^{7})^{\frac{1}{7}}$$

$$= (3.3^{2}.3^{4}.3^{5}.3^{6}.3^{6}.3^{7})^{\frac{1}{7}}$$

$$= (3.3^{2}.3^{4}.3^{5}.3^{6}.3^{6}.3^{7})^{\frac{1}{7}}$$

$$= (3.3^{2}.3^{4}.3^{5}.3^{6}.3^{7})^{\frac{1}{7}}$$

$$= (3.3^{2}.3^{6}.3^{6}.3^{7})^{\frac{1}{7}}$$

$$= (3.3^{2}.3^{6}.3^{6}.3^{6}.3^{7})^{\frac{1}{7}}$$

$$= (3.3^{2}.3^{6}.3^{6}.3^{7})^{\frac{1}{7}}$$

$$= (3.3^{2}.3^{6}.3^{6}.3^{6}.3^{6}.3^{6}.3^{7})^{\frac{1}{7}}$$

$$a, 6$$

$$GM = \sqrt{ab}$$

$$= (ab)^{\frac{1}{2}}$$

$$1+2+3+4-n=\frac{n(n+1)}{2}$$

What is the geometric mean of 3, 9, 27, 81, 243, 729, 2187?

PYQ - 2024 - II

- (a) 81
- (b) 105
- (c) 144
- (d) 243

Ans: (a)

Let the positive numbers a_1 , a_2 , a_3 ,, a_{3n} be in GP. If P is the GM of a_1 , a_2 , a_3 ,, a_n and Q is the GM of a_{n+1} , a_{n+2} , a_{n+3} ,, a_{3n} , then what is the GM of 3n numbers?

(c)
$$\sqrt{PQ}$$

$$P = (a_1 a_2 a_3 - a_n) \xrightarrow{\eta} \Rightarrow P$$

$$\theta = \left(a_{n+1} a_{n+2} a_{n+3} - - a_{3n}\right) \frac{1}{a_n}$$

$$\theta = \left(a_{n+1} a_{n+2} a_{n+3} - - a_{3n}\right) \frac{1}{a_n}$$

(d)
$$P^{1/3}Q^{2/3}$$
 $q_1, q_2, q_3 - \dots - q_{3n}$ $q_{3n} = \frac{1}{3n} \left(\frac{3n}{3n}\right) \frac{1}{3n} = \frac{1}{3n} \left(\frac{$

$$GM = \begin{pmatrix} a_1 & a_2 & a_3 & --- & a_{3n} \end{pmatrix}^{\frac{1}{3n}}$$

$$= \begin{pmatrix} a_1 & a_2 & a_3 & --- & a_{3n} \end{pmatrix}^{\frac{3}{3n}}$$

$$= \begin{pmatrix} a_1 & a_2 & a_3 & --- & a_{n+1} & a_{n+2} & --- & a_{3n} \end{pmatrix}^{\frac{3}{3n}}$$

$$(pn) \frac{1}{3n} (pn) \frac{1}{3n} = (pn) \frac{1}{3n} = (pn) \frac{1}{3n}$$

Let the positive numbers a_1 , a_2 , a_3 , ..., a_{3n} be in GP. If P is the GM of a_1 , a_2 , a_3 , ..., a_n and Q is the GM of a_{n+1} , a_{n+2} , a_{n+3} , ..., a_{3n} , then what is the GM of 3n numbers?

PYQ - 2024 - I

- (a) P²Q
- (b) PQ²
- (c) \sqrt{PQ}
- (d) $P^{1/3} Q^{2/3}$

Ans: (d)

The following observation have been arranged in ascending order:

If the median of data is 61.5, then what is the value of x?

(a) 54

(b) 60

(c) 62

(d) 56

$$\left(\frac{\eta}{a}\right)^{th}$$
 and $\left(\frac{\eta}{a}+1\right)^{th}$ obs.

$$\frac{61.5}{2} = \frac{2x+3}{2}$$

$$2x = /20$$

$$(x = 60)$$

The following observation have been arranged in ascending order:

29, 32, 48, 52, x, x + 3, 71, 75, 80, 92

If the median of data is 61.5, then what is the value of x?

(a) 54

(b) 60

(c) 62

(d) 56

If mean of y and $\frac{1}{y}$ is M, then what is the mean of

$$y^3$$
 and $\frac{1}{y^3}$?

(a)
$$\frac{M(M^2-3)}{3}$$
 (b) M^3 (c) M^3-3 (d) $M(4M^2-3)$

(c)
$$M^3 - 3$$

(b)
$$M^{3}$$

(d)
$$M(4M^2-3)$$

$$\frac{\left(\cancel{y} + \cancel{y}\right)^3 - 3\left(\cancel{y} + \cancel{y}\right)}{2}$$

$$\frac{(2M)^3 - 3(2M)}{3} = \frac{8M^3 - 6M}{3}$$

$$= 4M^3 - 3M$$

$$= 9M^{3} - 3M$$
$$= M(4M^{2} - 3)$$

If mean of y and $\frac{1}{v}$ is M, then what is the mean of

$$y^3$$
 and $\frac{1}{y^3}$?

- (a) $\frac{M(M^2-3)}{3}$ (b) M^3 (c) M^3-3 (d) $M(4M^2-3)$

QUESTION

For the follow	wing	freque	ncy distr	ribution		Moda/	class (mode always	
Class interval	0-5	5-10	10-15	15-20	20-25	25-30	lies inside the moda	/ dass)
Frequency	10	15	30	(80)	40	20		

If m is the value of mode, then which one of the following is correct?

(a)
$$5 < m < 10$$

(b)
$$10 < m < 15$$

(c)
$$15 < m < 20$$

(d)
$$20 < m < 25$$

For the following frequency distribution:

Class interval	0-5	5-10	10-15	15-20	20-25	25-30
Frequency	10	15	30	80	40	20

If m is the value of mode, then which one of the following is correct?

(a) 5 < m < 10

(b) 10 < m < 15

(c) 15 < m < 20

(d) 20 < m < 25

QUESTION

An average Indian family allocates its monthly income under different heads as follows:

Items	Percentage Share
Food	40
House Rent	15
Saving	x
Transport	12
Miscellaneous	23

A pie diagram of this data is to be drawn. What is the value of x, if the angle which the sector representing saving makes at the centre is 36°?

(a) 13

(b) 11

(c) 10

(d) 8

$$36^{\circ} = \frac{\chi}{40 + 15 + \chi + 12 + 23}$$

$$\frac{1}{10} = \frac{2}{90 + \chi}$$

$$90 + x = 10x$$

$$9x = 90 \Rightarrow (x = 10)$$

QUESTION

An average Indian family allocates its monthly income under different heads as follows:

Items	Percentage Share
Food	40
House Rent	15
Saving	x
Transport	12
Miscellaneous	23

A pie diagram of this data is to be drawn. What is the value of x, if the angle which the sector representing saving makes at the centre is 36°?

(a) 13

(b) 11

(c) 10

(d) 8

ANSWER: (c)

Suppose X is some statistical variable with mean μ . Let $x_1, x_2, ... x_n$ be its deviations from mean with the respective frequencies f_1 , f_2 , ..., f_n . What is the value of the sum x_1 f_1 + $x_2 f_2 + ... + x_n f_n$? [2008-11]

$$(d)$$
 $\mu+1$

$$24f_1+22f_2+- 2nf_n$$

$$(\mu-\gamma_1)f_1+(\mu-\gamma_2)f_2+----(\mu-\gamma_n)f_n$$

$$(\mu - y_n) f_n$$

$$\mu f_1 + \mu f_2 + \mu f_3 + -- \mu f_n - y_1 f_1 - y_2 f_2 - y_3 f_3 - -- -- y_n f_n$$

$$\mu f_{1} + \mu f_{2} + \mu f_{3} + \dots + \mu f_{n} - g_{1} f_{1} - g_{2} f_{2} - g_{3} f_{3} - \dots - g_{n} f_{n}$$

$$\mu (f_{1} + f_{2} + f_{3} + \dots + f_{n}) - (g_{1} f_{1} + g_{2} f_{2} + \dots - g_{n} f_{n})$$

$$= \mu (f_{1} + f_{2} + \dots + f_{n}) - \mu (f_{1} + f_{2} + \dots + f_{n})$$

$$\mu = \underbrace{g_{1} f_{1}}_{\xi f_{1}}$$

$$= \underbrace{0}$$

$$\mu f_{1} + f_{2} + \dots + f_{n} = \underbrace{g_{1} f_{1}}_{\xi f_{1}}$$

$$\mu f_{1} + f_{2} + \dots + f_{n} = \underbrace{g_{1} f_{1}}_{\xi f_{1}}$$

$$\mu f_{1} + f_{2} + \dots + f_{n} = \underbrace{g_{1} f_{1}}_{\xi f_{2}}$$

Suppose X is some statistical variable with mean μ . Let $x_1, x_2, ... x_n$ be its deviations from mean with the respective frequencies $f_1, f_2, ..., f_n$. What is the value of the sum $x_1 f_1 + x_2 f_2 + ... + x_n f_n$? [2008-II]

- (c) μ (d) $\mu+1$

Data on percentage distribution of area of land in acres owned by households in two districts of a particular state are as follows:

Land Holding	District A	District B
0.01-0.99	5.62	13.53
1.0 - 2.49	18.35	21.84
2.5 - 7.49	47.12	39.32
7.5 - 12.49	19.34	12.15
12.5-19.99	7.21	7.43
20.0 - 29.99	2.36	5.73

What is the appropriate diagram to represent the above data? [2009-I]

(a) Pie diagram

(b) Histogram

(c) Bar chart

(d) None of the above

Data on percentage distribution of area of land in acres owned by households in two districts of a particular state are as follows:

Land Holding	District A	District B
0.01 - 0.99	5.62	13.53
1.0 - 2.49	18.35	21.84
2.5 - 7.49	47.12	39.32
7.5 - 12.49	19.34	12.15
12.5 - 19.99	7.21	7.43
20.0 - 29.99	2.36	5.73

What is the appropriate diagram to represent the above data? [2009-I]

(a) Pie diagram

(b) Histogram

(c) Bar chart

(d) None of the above

ANSWER: (c)

The geometric mean of x and y is 6 and the geometric mean of x, y and z is also 6. Then the value of z is [2017-II]

(a) 12

(c)

$$\sqrt{2y} = 6 \Rightarrow$$

$$\sqrt{2y} = 6 \Rightarrow (xy)^{1/3} = 6 \Rightarrow xy = 36$$

$$\sqrt[3]{xyz} = 6 \Rightarrow (xyz)^{\frac{1}{3}} = 6$$

$$xyz = 6^3$$

$$36 xz = 6^3$$

$$(z = 6)$$

The geometric mean of x and y is 6 and the geometric mean of x, y and z is also 6. Then the value of z is [2017-II]

(a) 12

(b) $\sqrt{6}$

(c) 6

(d) $\sqrt[3]{6}$

Which one of the following is not correct?

The proportion of various items in a pie diagram is proportional to the [2017-II]

- (a) Areas of slices ✓
- (b) Angles of slices
- (c) Lengths of the curved arcs of the slices ✓

QUESTION

Which one of the following is not correct?

The proportion of various items in a pie diagram is proportional to the [2017-II]

- (a) Areas of slices
- (b) Angles of slices
- (c) Lengths of the curved arcs of the slices
- (d) Perimeters of the slices

ANSWER: (d)

The weighted arithmetic mean of first 10 natural numbers whose weights are equal to the corresponding numbers is equal to

Tall to the corresponding numbers is

[2015-II]

(b) 14
(d) 38.5

Mean =
$$\frac{2 \pi f}{2 f} = \frac{(x/1 + 2 \times 2 + 3 \times 3) - 10 \times 10}{(1 + 2 + 3 + 4 + 2)} = \frac{2n + 1}{3}$$

$$= \frac{(^2 + 2^2 + 3^2 + 2 - 10)}{(1 + 2 + 3 + 2 + 2 - 2)} = \frac{2(10) + 1}{3}$$

$$= \frac{21}{3} = \frac{21}{3}$$

$$=\frac{2/}{3}=9$$

The weighted arithmetic mean of first 10 natural numbers whose weights are equal to the corresponding numbers is equal to [2015-II]

(a) 7

(b) 14

(c) 35

(d) 38.5

The median of a set of 9 distinct observations is 20.5. If each of the largest 4 observations of the set is increased by 2, then the median of the new set [2016-II]

- (a) is increased by 2
- (b) is decreased by 2
- (c) is two times the original median
- (d) remains the same as that of original set

$$n = 9 \text{ (odd)}$$

$$Median = \left(\frac{n+1}{2}\right)^{th} \text{ bbs} = \left(\frac{9+1}{2}\right)$$

$$= 5^{th} \text{ bbs}$$

Median

will be same

The median of a set of 9 distinct observations is 20.5. If each of the largest 4 observations of the set is increased by 2, then the median of the new set [2016-II]

- (a) is increased by 2
- (b) is decreased by 2
- (c) is two times the original median
- (d) remains the same as that of original set

ANSWER: (d)

The geometric mean of $(x_1, x_2, x_3, ..., x_n)$ is X and the geometric mean of $(y_1, y_2, y_3, ..., y_n)$ is Y. Which of the following is/are correct?

- I. The geometric mean of $(x_1 y_1, x_2 y_2, x_3 y_3, ..., x_n y_n)$ is XY.
- II. The geometric mean of $\left(\frac{x_1}{y_1}, \frac{x_2}{y_2}, \frac{x_3}{y_3}, ..., \frac{x_n}{y_n}\right)$ is $\frac{X}{Y}$.

 Select the correct answer using the code given below.

[2014-I]

(a) Only I

(b) Only II

(c) Both I and II

(d) Neither I nor II

$$\frac{\chi_{1} \chi_{2} \chi_{3} - \chi_{n}}{\chi_{1} \chi_{2} \chi_{3} - \chi_{n}} = \frac{(\chi_{1} \chi_{2} - \chi_{n})^{\frac{1}{n}}}{(\chi_{1} \chi_{2} - \chi_{n})^{\frac{1}{n}}} = \frac{\chi}{\gamma}$$

$$\begin{array}{c}
\boxed{2} \\
(x_1, y_1 \cdot x_2, y_2 \cdot x_3, y_3 \cdot \dots \cdot x_n, y_n) \xrightarrow{1} \\
(x_1, x_2 - \dots \cdot x_n) \xrightarrow{1} (y_1, y_2, y_3 - \dots \cdot y_n) \xrightarrow{2} \\
(x_n) & (y_n) & (y_n)$$

The geometric mean of $(x_1, x_2, x_3, ..., x_n)$ is x and the geometric mean of $(y_1, y_2, y_3, ..., y_n)$ is y. Which of the following is/are correct?

- I. The geometric mean of $(x_1 y_1, x_2 y_2, x_3 y_3, ..., x_n y_n)$ is XY.
- II. The geometric mean of $\left(\frac{x_1}{y_1}, \frac{x_2}{y_2}, \frac{x_3}{y_3}, ..., \frac{x_n}{y_n}\right)$ is $\frac{X}{Y}$.

Select the correct answer using the code given below.

[2014-I]

(a) Only I

- (b) Only II
- (c) Both I and II
- (d) Neither I nor II

