NDA-CDS 1 2025

ISSBCrack

-SS

rack

FORCE & LAWS OF MOTION CLASS 1

LIVE

LAWS OF MOTION

WHAT WILL WE STUDY ?

- Inertia 🗸
- First Law of Motion \checkmark
- Momentum and Force \checkmark
- Second Law of Motion \checkmark
- Third Law of Motion \checkmark
- Conservation of Momentum \checkmark

SS

INERTIA

- The property of an object by virtue of which it cannot change its state of rest or of uniform motion along a straight line on its own, is called inertia.
- Greater the mass of a body greater will be its inertia and vice-versa.
- Inertia is of three types :
 - 1. Inertia of Rest
 - 2. Inertia of Motion
 - 3. Inertia of Direction

touch between

the Lodies)

FORCE

- Force is a push or pull which changes or tries to change the state of rest, the state of uniform motion, size or shape of a body.
- It is a vector quantity. Its SI unit is Newton (N).
- Forces can be categorised into two types:
- 1. Contact Forces : Frictional, Spring Force etc. (that needs physical touch for application)
- 2. Non Contact Forces : Gravitational, Electrostatic etc. (does not needs physica)

FUNDAMENTAL FORCES IN NATURE

Gravitational Force

Electromagnetic Force

strmg nuclear force (strongest)

Weak nuclear forces are responsible for the radioactive decay, specifically the beta decay neutrino interactions.

weak nudear force

MOMENTUM

- The total amount of motion present in a body.
- Linear momentum of a body is equal to the product of its mass and velocity. It is denoted by p. Linear momentum, p = mv.
- It is a vector quantity and its direction is in the direction of velocity of the body.
 Its SI unit is kg m/s.

FIRST LAW OF MOTION

- A body continues to be in its state of rest or in uniform motion along a straight line unless an external force is applied on it.
- This law is also called law of inertia.

SECOND LAW OF MOTION

• The rate of change of linear momentum is proportional to the applied

force and change in momentum takes place in the direction of applied force.

IMPULSE

- The product of Force and time for which it acts is called impulse.
- Impulse = Force × Time = Change in momentum
- It is a vector quantity and its direction is in the direction of force.

From second law of motion,

$$F = \frac{k \, dp}{dt}$$
 $F = \frac{p_2 - p_1}{t_2 - t_1}$
 $F = \frac{dp}{dt}$
 $F = \frac{dp}{dt}$

constant

THIRD LAW OF MOTION

- For every action there is an equal and opposite reaction.
- Forces always occur in pairs. Force on a body A by B is equal and opposite to the force on the body B by A.
- There is no cause- effect relation implied in the third law. The force on A by B and the force on B by A act at the same instant.

CONSERVATION OF LINEAR MOMENTUM

• If no external forces acts on a system, then its total linear momentum remains

NDA & CDS 1 2025 LIVE - PHYSICS - CLASS 14 COMMON FORCES IN MECHANICS

- <u>WEIGHT</u>: It is the force with which a body is pulled towards the centre of the earth due to gravity. W = mq
- <u>NORMAL REACTION</u> : It is the force between two surfaces in contact, which is always perpendicular to the surfaces in contact.

• **<u>TENSION</u>** : A pulling Force that stretches a material.

SSBC

FRICTION

- A force acting on the point of contact of the objects, which opposes the relative motion.
- It acts parallel to the contact surfaces.
- Frictional forces are produced due to intermolecular interactions acting between the molecules of the bodies in contact.

TYPES OF FRICTION

1. <u>STATIC FRICTION</u>: It is an opposing force which comes into play when one body tends to move over the surface of the other body but actual motion is not taking place. Static friction is a self-adjusting force which increases as the applied force is foru of friction, increased. Static friction opposes impending motion. IO N — norma/ 5N Yeachim 5N $f_s \leq \mu_s N$ coefficient of static friction (different for different surfaces)

SSBC

TYPES OF FRICTION

2. <u>KINETIC OR SLIDING FRICTION</u>: It is an opposing force that comes into existence

٩

when one object is actually moving over the surface of other object.

• As, rolling friction < sliding friction, therefore it is easier to roll a body than to slide.

NDA & CDS 1 2025 LIVE - PHYSICS - CLASS 14 Motion of Two Bodies, One Resting on the Other

Let the coefficient of friction between the given surface and body A is μ_1 and the coefficient of friction between the surfaces of bodies A and B is μ_2 . If a force F is applied on the lower body A.

SSBCrac

SUMMARY

- Inertia
- Momentum , Force and Impulse
- First , Second and Third Law of Motion
- Conservation of Momentum
- Other Forces
- Friction

