MATHS

PROBABILITY

ISSBCrack

Crack

RANDOM EXPERIMENT

An experiment is random means that the experiment has more than one possible outcome and it is not possible to predict with certainty which outcome that will be.

OUTCOME AND SAMPLE SPACE

A possible result of a random experiment is called its outcome for example if the experiment consists of tossing a coin twice, some of the outcomes are HH, HT etc.

A sample space is the set of all possible outcomes of an experiment. In fact, it is the universal set S for a given experiment.

The sample space for the experiment of tossing a coin twice is given by

S = {HH, HT, TH, TT} The sample space for the experiment of drawing a card out of a deck is the set of all cards in the deck.

EVENT

An event is a subset of a sample space S. set confaining favourable outcomes. \rightarrow Sample Space, S acts as Universal Set. **For example, the event of drawing an ace from a deck is A = {Ace of Heart, Ace of Club, Ace of Diamond, Ace of Spade}**

IMPOSSIBLE AND SURE EVENT :

φ is called an impossible event and S, i.e., the whole sample space is called a sure event.

Example
$$
\rightarrow
$$
 ① Through a die and getting a number larger than 6.
(e = $\cancel{\phi}$) (Impossible event)

$$
\rightarrow \text{Setting a number less than 7, when a die is rolled.}
$$
\n
$$
(E = S \rightarrow Sample space) \qquad \text{(sure event)}
$$

SINGLE OR ELEMENTARY EVENT : If an event E has only one sample point of a sample space, i.e., a single outcome of an experiment, it is called a simple or elementary event.

Getting '1' when a di'u is thrown
$$
\Rightarrow E = \{1\} \Rightarrow n(E) = 1
$$

Gething 'King of Hearts' When a card $\Rightarrow E = \{Fg\}$
is drawn from deck

COMPOUND EVENT : If an event has more than one sample point it is called a

compound event.

$$
\frac{Eg}{U} \cdot \bigcirc \text{Getting} \quad a \quad number \quad more \quad than \quad 3 \quad \text{when} \quad a \quad die \quad is \quad rolled.
$$
\n
$$
E = \{ u, 5, 6 \}
$$

 $n(\epsilon)$

COMPLEMENTARY EVENT : Given an event A, the complement of A is the event

consisting of all sample space outcomes that do not correspond to the occurrence of A. The complement of A is denoted by A' or A^2 .

It is also called the event 'not A'. $A' = A = S - A = \{w : w \in S \text{ and } w \notin A\}$

HSSE

EVENT A or B

If A and B are two events associated with same sample space, then the event 'A or B' is

same as the event A ∪ B and contains all those elements which are either in A or in B mum all elements of or in both.

A OB = $\{x : 2 \in A \text{ or } x \in B \text{ or } x \in both\}$		un element
Example : E_i : $9e^{\frac{1}{2}}$ a number less than 3 a number		when a die is rolled.
E_2 : $\{1, 2\}$	a prime number	When a die is rolled.
$E_i = \{1, 2\}$	$E_2 = \{2, 3, 5, 5\}$	$E_i = \{1, 4, 3, 5\}$

EVENT A and B

If A and B are two events associated with a sample space, then the event 'A and B' is

same as the event A∩ B and contains all those elements which are common to both A $(A \nintersechom B \longrightarrow \ncommon \neq b\not\neq A \nleq B)$ and B.

$$
\varepsilon_{1} = \{1, 2\}
$$
\n
$$
\varepsilon_{2} = \{2, 3, 5\}
$$
\n
$$
\begin{matrix}\n\vdots & \vdots & \vdots & \vdots \\
\hline\n\vdots & \vdots & \vdots & \vdots & \vdots \\
\hline\n\vdots & \vdots & \vdots & \vdots & \vdots \\
\hline\n\vdots & \vdots & \vdots & \vdots & \vdots \\
\hline\n\vdots & \vdots & \vdots & \vdots & \vdots \\
\hline\n\vdots & \vdots & \vdots & \vdots & \vdots \\
\hline\n\vdots & \vdots & \vdots & \vdots & \vdots \\
\hline\n\vdots & \vdots & \vdots & \vdots & \vdots \\
\hline\n\vdots & \vdots & \vdots & \vdots & \vdots \\
\hline\n\vdots & \vdots & \vdots & \vdots & \vdots \\
\hline\n\vdots & \vdots & \vdots & \vdots & \vdots \\
\hline\n\vdots & \vdots & \vdots & \vdots & \vdots \\
\hline\n\vdots & \vdots & \vdots & \vdots & \vdots \\
\hline\n\vdots & \vdots & \vdots & \vdots & \vdots \\
\hline\n\vdots & \vdots & \vdots & \vdots & \vdots \\
\hline\n\vdots & \vdots & \vdots & \vdots & \vdots \\
\hline\n\vdots & \vdots & \vdots & \vdots & \vdots \\
\hline\n\vdots & \vdots & \vdots & \vdots & \vdots \\
\hline\n\vdots & \vdots & \vdots & \vdots & \vdots \\
\hline\n\vdots & \vdots & \vdots & \vdots & \vdots \\
\hline\n\vdots & \vdots & \vdots & \vdots & \vdots \\
\hline\n\vdots & \vdots & \vdots & \vdots & \vdots \\
\hline\n\vdots & \vdots & \vdots & \vdots & \vdots \\
\hline\n\vdots & \vdots & \vdots & \vdots & \vdots \\
\hline\n\vdots & \vdots & \vdots & \vdots & \vdots \\
\hline\n\vdots & \vdots & \vdots & \vdots & \vdots \\
\hline\n\vdots & \vdots & \vdots & \vdots & \vdots \\
\hline\n\vdots & \vdots & \vdots & \vdots & \vdots \\
\hline\n\vdots & \vdots & \vdots & \vdots & \vdots \\
\hline\n\vdots & \vdots & \vdots
$$

EVENT A but not B (Difference A – B)

An event A – B is the set of all those elements of the same space S which are in A but

MUTUALLY EXCLUSIVE EVENTS \sharp

Two events A and B of a sample space S are mutually exclusive if the occurrence of any

one of them excludes the occurrence of the other event. Hence, the two events A and

B cannot occur simultaneously, and thus A∩B = φ **(Also called Pairwise Disjoint)**

Simple or elementary events of a sample space are always mutually exclusive. For example, the elementary events $\{1\}$, $\{2\}$, $\{3\}$, $\{4\}$, $\{5\}$ or $\{6\}$ of the experiment of throwing a dice are mutually exclusive.
 $E_1, E_2, E_3 \cdots E_n$ if $E_i \cap E_j = \emptyset$ (i $\neq j$) mutually exclusive

EXHAUSTIVE EVENTS
@

If E_1 , E_2 , ..., E_n are *n* events of a sample space S and if

$$
E_1 \cup E_2 \cup E_3 \cup ... \cup E_n = \bigcup_{i=1}^{n} E_i = S
$$

then $E_1, E_2, ..., E_n$ are called exhaustive events.

Consider the example of rolling a die. We have $S = \{1, 2, 3, 4, 5, 6\}$. Define the two events

- A : 'a number less than or equal to 4 appears.' \leftarrow $A = \{1, 2, 3, 4\}$
- B : 'a number greater than or equal to 4 appears.' \sim

$$
\beta = \{4, 5, 6\}
$$

$$
AUB = \frac{5}{6}1, \frac{3}{1}, \frac{3}{1}, \frac{4}{1}, \frac{5}{16} = S \Rightarrow A Q B are exhaustive events
$$

MUTUALLY EXCLUSIVE AND EXHAUSTIVE EVENTS

If E_1 , E_2 , ..., E_n are n events of a sample space S and if $E_i \cap E_j = \varphi$ for every i \neq j i.e., E_i and E_j are pairwise disjoint and $\bigcup E_i = S$, then the events E_1 , E_2 , ..., E_n are called mutually exclusive and exhaustive events.

Consider the example of rolling a die. Let us define the three events as

A = a number which is a perfect square
\n
$$
B = a prime number \rightarrow {2, 3, 5}
$$
\nB = a number which is greater than or equal to 6
\n
$$
C = a number which is greater than or equal to 6
$$
\n
$$
A \cup B \cup C = {1, 2, 3, 4, 5, 6} = 5
$$

PROBABILITY OF AN EVENT

Let S be the sample space and E be an event, such that $n(S) = n$ and $n(E) = m$. If each

outcome is equally likely, then it follows that

PROBABILITY OF AN EVENT

The probability P is a real valued function whose domain is the power set of S, i.e., P (S) and range is the interval $[0, 1]$ i.e. $P : P(S) \rightarrow [0, 1]$. $0 \leq P(E) \leq I$

The probability of non occurrence of the event E is denoted by

$$
P(\text{not } E) = 1 - P(E)
$$
\n
$$
\begin{cases}\nA' = S - A \\
P(A') = P(S - A) \\
P(A') = P(A)\n\end{cases}
$$
\n
$$
P(A') = 1 - P(A)
$$

 $\frac{y}{b}$ ϵ , ϵ , \ldots ϵ , are mutually exclusive as well us exhaustive events under Sample Space S,

 $E_1 \cup E_2 \cup E_3 \rightarrow - \rightarrow E_n = S$ $P(E_1) + P(E_2) + \cdots + P(E_n) = P(s)$ $\left(\int_{0}^{b} (E_{1}) + p(E_{2}) + \ldots + p(E_{n}) = 1\right)$

ADDITION RULE

If A and B are any two events in a sample space S, then the probability that atleast one

of the events A or B will occur is given by

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

NDA 1 2025 LIVE CLASS - MATHS - PART 1 VENN DIAGRAM: TYPE 1

We have only two events A and B 1. $P(A \cup B) = P(A) + P(B) - P(AB) \nearrow (A \cap B)$ (Addition theorem for two events)

ADDITION RULE

For three events,

 $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$

NDA 1 2025 LIVE CLASS - MATHS - PART 1 VENN DIAGRAM: TYPE 2

When we have three events A, B and C

Shaded region : (AUBUC)

VENN DIAGRAM: TYPE 2

&SSBCrack

QUESTION

Suppose that each child born is equally likely to be a boy or a girl. Consider a family

with exactly three children.

Write each of the following events as a set and find its probability :

- The event that exactly one child is a girl.
- The event that at least two children are girls (11)

The event that no child is a girl (111)

 G G $\binom{3}{1}$ $B B B$ GBB V $G G B$ $B G G$ G B G $B G B$

QUESTION

What is the probability that a randomly chosen two-digit positive integer is a multiple of 3?

$$
11, 12, 13, 14 - . . . 99
$$
\nProbability =
$$
\frac{30}{90} = \left(\frac{1}{3}\right)^{1}
$$

$$
12, 15, 18 = -99 \text{ (AP)}
$$

\n $99 = 12 + (n-1)(9)$
\n $n = 87 + 1$
\n $n = 29 + 1 = 20$

QUESTION

In a leap year the probability of having 53 Sundays or 53 Mondays is

(A)
$$
\frac{2}{7}
$$
 (B) $\frac{3}{7}$ (C) $\frac{4}{7}$ (D) $\frac{5}{7}$
\n52 ω eckg = 52 × 7 = 364 ω g f + 2 ω g f = 366 ω g f (keap
\nevery year
\n $\frac{\omega_{\text{exp}}}{7}$ (San Mn), (Mm, Tue), (Tue, Ned), (Ned, Tbur),
\n $\frac{\frac{2}{7}}{\frac{7}{7}}$ (Thur, Fri), (Fri, Safi), (Sar, Sun)

EXAMPLE

Let A and B be the two possible outcomes of an experiment and $P(A) = 0.4$, $P(B) = x$ and $P(A \cup B) = 0.7$. What is value of x, the events A and B are mutually exclusive? (a) 0.3 (b) 0.2 (c) 0.5 (d) 0.7 if $A \, \Omega \, B$ are mutually exclusive; $P(A \cap B) = 0$ $P(AUB) = P(A) + P(B)$ 0.7 + 0.4 + $\rho(B)$

EXAMPLE

Let A and B be the two possible outcomes of an experiment and $P(A) = 0.4$, $P(B) = x$ and $P(A \cup B) = 0.7$. What is value of x , the events A and B are mutually exclusive? (a) 0.3 (b) 0.2 (c) 0.5 $(d) 0.7$

HSSBCT

Ans: (a)

Consider A and B are two non-mutually exclusive events.

If
$$
P(A) = \frac{1}{4}
$$
, $P(B) = \frac{2}{5}$ and $P(A \cup B) = \frac{1}{2}$,

Q)The value of $P(A \cap B)$ is

(a) $\frac{4}{13}$

(c) $\frac{3}{43}$

(b) $\frac{3}{20}$

(d) None of these

Q) The value of
$$
P(A \cap B')
$$
 is
\n(a) $\frac{1}{10}$ (b) $\frac{2}{13}$
\n(c) $\frac{1}{5}$ (d) None of these
\n $A \cap B' = A - (A \cap B)$ If $P(A) = \frac{1}{4}$, $P(B) = \frac{2}{5}$ and $P(A \cup B) = \frac{1}{2}$,
\n $P(A \cap B') = P(A - (A \cap B))$
\n $= P(A) - P(A \cap B) = \frac{1}{4} - \frac{3}{40} = \frac{5 - 3}{40} = \frac{3}{40} = \frac{5 - 3}{40} = \frac{1}{40}$

Ans: (a)

Q) The value of
$$
P(A' \cap B')
$$
 is
\n(a) $\frac{1}{3}$ (b) $\frac{1}{2}$
\n(c) $\frac{1}{5}$ (d) None of these
\nIf $P(A) = \frac{1}{4}$, $P(B) = \frac{2}{5}$ and $P(A \cup B) = \frac{1}{2}$,
\n $P(A' \cap B') = P(A \cup B)'$
\n $= 1 - P(A \cup B)$
\n $= 1 - \frac{1}{4} = \frac{1}{4}$

MATHS

PROBABILITY

ISSBCrack

Crack

