

Let x-3y+4=0 and 2x-7y+8=0 be two lines of regression computed from some bivariate data. If b_{yx} and b_{xy} are regression coefficients of lines of regression of y on x and x on yrespectively, then what is the value of $b_{xy} + 7b_{yx}$?

(a)
$$-2$$

$$x - 3y + 4 = 0$$

$$2x - 7y + 8 = 0$$

(d) 5

$$\frac{2}{7}$$
 (by x)

$$b_{xy} + 7b_{yx} = 3 + 7\left(\frac{2}{7}\right) = 3 + 2 = 6$$

Let x-3y+4=0 and 2x-7y+8=0 be two lines of regression computed from some bivariate data. If b_{yx} and b_{xy} are regression coefficients of lines of regression of y on x and x on yrespectively, then what is the value of $b_{xy} + 7b_{yx}$?

- (a) -2
- (b) 1
- (c) 2
- (d) 5

Ans: (d)

The mean of n observations

1, 4, 9, 16, ...,
$$n^2$$

is 130. What is the value of n?

(a) 18
(b) 19
(c) 20
(d) 21

$$\frac{(n+1)(2n+1)}{6} = 780$$
(a) 14×37
(b) 20 \times 39 = 780

$$\frac{(n+1)(2n+1)}{6} = 780$$

$$\frac{780}{780} = 780$$
(a) 14×37

$$\frac{780}{780} = 780$$

The mean of n observations

1, 4, 9, 16, ...,
$$n^2$$

is 130. What is the value of n?

- (a) 18
- (b) 19
- (c) 20
- (d) 21

Ans: (b)

What is the mean deviation of the first 10 natural numbers?

(a) 2 Mean =
$$1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10$$

(b) 2.5

$$= \frac{\frac{10 \times 11}{2}}{\frac{2}{10}} = \frac{55}{10} = \frac{5 \cdot 5}{10}$$

$$1+2+3+\cdots n = n(n+1)$$

Mean deriation = $\leq |(x_i - \bar{x})|$

Mean =
$$4.5 + 3.5 + 2.5 + 1.5 + 0.5 + 1.5 + 2.5 + 3.5 + 4.5$$

deviation

$$= \frac{2(4.5 + 3.5 + 2.5 + 1.5 + 0.5)}{10} = \frac{2 \times 12.5}{10} = \frac{25}{10} = (2.5)^{3}$$

What is the mean deviation of the first 10 natural numbers?

- (a) 2
- (b) 2·5
- (c) 3
- (d) 3·5

Ans: (b)

Let $\sum_{i=1}^{9} x_i^2 = 855$. If *M* is the mean and

 σ is the standard deviation of x_1, x_2, \dots, x_9 , then what is the value of

$$M^2 + \sigma^2$$
?

$$\int_{0}^{2} = \frac{\langle \chi_{i}^{2} \rangle}{\eta} - \left(\frac{\langle \chi_{i}^{2} \rangle}{\eta}\right)^{2}$$

$$5^2 = \frac{855}{9} - M^2$$

$$6^2 + M^2 = \frac{855}{9} = 95$$

Let $\sum_{i=1}^{9} x_i^2 = 855$. If *M* is the mean and

 σ is the standard deviation of x_1, x_2, \dots, x_9 , then what is the value of $M^2 + \sigma^2$?

- (a) 100
- (b) 95
- (c) 90
- (d) 85

Ans: (b)

The mean of the series x_1, x_2, \dots, x_n is \overline{x} . If x_n is replaced by k, then what is the new mean?

(a)
$$\bar{x} - x_n + k$$

(b)
$$\frac{n\overline{x} - \overline{x} + k}{n}$$

$$\frac{\chi_1 + \chi_2 + \dots + \chi_n}{n} = \overline{\chi}$$

(c)
$$\frac{\overline{x}-x_n-k}{n}$$

(d)
$$\frac{n\overline{x} - x_n + k}{n}$$

New mean =
$$(x_1 + x_2 + - x_n) - x_n + k$$

New mean =
$$n\overline{x} - x_n + k$$

The mean of the series x_1, x_2, \dots, x_n is \bar{x} . If x_n is replaced by k, then what is the new mean?

- (a) $\overline{x} x_n + k$
- (b) $\frac{n\overline{x} \overline{x} + k}{n}$
- (c) $\frac{\overline{x} x_n k}{n}$
- (d) $\frac{n\overline{x} x_n + k}{n}$

Ans: (d)

Q) It is given that $\overline{X} = 10$, $\overline{Y} = 90$, $\sigma_X = 3$, $\sigma_Y = 12$ and $r_{XY} = 0.8$. The regression equation of X on Y is

(a)
$$Y = 3.2X + 58$$

(b)
$$X = 3.2Y + 58$$

(c)
$$X = -8 + 0.2Y$$

(d)
$$Y = -8 + 0.2X$$

$$x - \bar{x} = r \frac{\delta_x}{\delta_y} \left(y - \bar{y} \right)$$

passing point =
$$(\bar{x}, \bar{y})$$

slope = $\gamma \frac{6x}{6y}$

$$\chi - 10 = 0.8 \left(\frac{3}{12}\right) \left(y - 90\right)$$

$$1 - 10 = 6 \cdot 2 \left(y - 90 \right) \Rightarrow$$

$$\chi - 0.2 \chi + 8 = 0 \implies \begin{cases} \chi = 0.2 \chi - 8 \end{cases}$$

Q) It is given that $\overline{X} = 10$, $\overline{Y} = 90$, $\sigma_X = 3$, $\sigma_Y = 12$ and $r_{XY} = 0.8$. The regression equation of X on Y is

(a) Y = 3.2X + 58

(b) X = 3.2Y + 58

(c) X = -8 + 0.2Y

(d) Y = -8 + 0.2X

Ans: (c)

Q)Consider the following statements:

- 1. If the correlation coefficient $r_{xy} = 0$, then the two lines of regression are parallel to each other.
- 2. If the correlation coefficient $r_{xy} = +1$, then the two lines of regression are perpendicular to each other.

Which of the above statements is/are correct?

(a) 1 only

- (b) 2 only
- (c) Both 1 and 2
- (d) Neither 1 nor 2

If
$$r_{xy} = 0 \Rightarrow fano = \infty \Rightarrow lines are perpendicular;$$

$$r_{xy} = +1 \Rightarrow fano = 0 \Rightarrow lines are parallel,$$

Q) Consider the following statements:

- 1. If the correlation coefficient $r_{xy} = 0$, then the two lines of regression are parallel to each other.
- 2. If the correlation coefficient $r_{xy} = +1$, then the two lines of regression are perpendicular to each other.

Which of the above statements is/are correct?

(a) 1 only

(b) 2 only

(c) Both 1 and 2

(d) Neither 1 nor 2

Ans: (d)

- **Q)** If 4x 5y + 33 = 0 and 20x 9y = 107 are two lines of regression, then what are the values of \bar{x} and \bar{y} respectively?
 - (a) 12 and 18

(b) 18 and 12

(c) 13 and 17

(d) 17 and 13

(
$$\bar{x}$$
, \bar{y}) is the passing point for both lines.
So, intersection point of the two lines will give values of \bar{x} and \bar{y} .

$$4x - 5y = -33 - x5$$

$$20x - 25y = -165$$

$$20x - 9y = 107$$

$$\frac{20x - 9y = 107}{(-)(+)(-)}$$

$$\frac{y = 17}{-16y = -272}$$

$$4x - 5y = -33 - x5$$

 $40x - 9y = 107$

$$\frac{20x - 45y = -165}{20x - 9y = 107}$$

$$\frac{(-) (+) (-)}{-16y = -272}$$

Q) If 4x - 5y + 33 = 0 and 20x - 9y = 107 are two lines of regression, then what are the values of \bar{x} and \bar{y} respectively?

(a) 12 and 18

(b) 18 and 12

(c) 13 and 17

(d) 17 and 13

Ans: (c)

- Q) The median of a set of 9 distinct observations is 20.5. If each of the largest 4 observations of the set is increased by 2, then the median of the new set
 - (a) remains the same as that of the original set
 - (b) is increased by 2
 - (c) is decreased by 2
 - (d) is two times the original median.

- Q) The median of a set of 9 distinct observations is 20.5. If each of the largest 4 observations of the set is increased by 2, then the median of the new set
 - (a) remains the same as that of the original set
 - (b) is increased by 2
 - (c) is decreased by 2
 - (d) is two times the original median.

Ans: (a)

Q) Consider the following statements:

- (A) Mode can be computed from histogram

 (B) Median is not independent of change of scale

 Multiplying
- Variance is independent of change of origin and scale. Observation

Which of these is / are correct?

- (a) (A), (B) and (C) (b) only (B) (c) only (A) and (B) (d) only (A)

not independent of change of scale;

- **Q)** Consider the following statements:
 - (A) Mode can be computed from histogram
 - Median is not independent of change of scale
 - Variance is independent of change of origin and scale.

Which of these is / are correct?

- (a) (A), (B) and (C) (b) only (B)
- (c) only (A) and (B) (d) only (A)

Ans: (c)

Q)In a series of 2 n observations, half of them equal a and remaining half equal -a. If the standard deviation of the observations is 2, then |a| equals.

(a)
$$\frac{\sqrt{2}}{n}$$

(b)
$$\sqrt{2}$$

(c) 2 (d)
$$\frac{1}{n}$$

$$\frac{a}{\sqrt{n}} - a - a - a$$

$$Mean = \frac{0}{2n} = 0$$

$$SD = \sqrt{\frac{2(\lambda_1 - \lambda_1)}{\eta}}$$

$$2 = \sqrt{(0 - \alpha)^2 + \dots + (0 + \alpha)^2 + \dots}$$

$$\frac{\partial}{\partial x} = \sqrt{\frac{2n(a^2)}{2n}}$$

$$\frac{\partial}{\partial x} = \frac{2n(a^2)}{2n}$$

$$\frac{\partial}{\partial x} = \frac{2n(a^2)}{2n}$$

Q)In a series of 2 n observations, half of them equal a and remaining half equal -a. If the standard deviation of the observations is 2, then |a| equals.

(a) $\frac{\sqrt{2}}{n}$

(b) $\sqrt{2}$

(c) 2

(d) $\frac{1}{n}$

Ans: (c)

Q) The arithmetic mean of 1, 8, 27, 64,.... up to n terms is given by

(a)
$$\frac{n(n+1)}{2}$$

(b)
$$\frac{n(n+1)^2}{2}$$

(c)
$$\frac{n(n+1)^2}{4}$$

(d)
$$\frac{n^2(n+1)^2}{4}$$

Mean =
$$\frac{1^3 + 2^3 + \dots + n^3}{\eta} = \frac{\frac{\pi^2 (n+1)^2}{4}}{\frac{2\pi}{2}} = \frac{\left[\frac{n(n+1)^2}{4}\right]}{\frac{2\pi}{2}}$$

Q) The arithmetic mean of 1, 8, 27, 64,.... up to n terms is given by

(a)
$$\frac{n(n+1)}{2}$$

(b)
$$\frac{n(n+1)^2}{2}$$

(c)
$$\frac{n(n+1)^2}{4}$$

(d)
$$\frac{n^2(n+1)^2}{4}$$

Q) The mean of the numbers a, b, 8, 5, 10 is 6 and the variance is 6.80. Then which one of the following gives possible values of a and b?

(a)
$$a = 0, b = 7$$

(b)
$$a = 5, b = 2$$

(c)
$$a=1, b=6$$

(d)
$$a = 3, b = 4$$

$$\frac{a+b+8+5+10}{5} = 6$$

$$6 \cdot 80 = (6-a)^2 + (6-b)^2 + (6-8)^2 + (6-5)^2 + (6-10)^2$$

$$34.00 = \frac{36}{9} + a^2 - 12a + \frac{36}{9} + 6^2 - 12b + \frac{9}{9} + \frac{1}{10}$$

$$34 = 93 + a^2 - 12a + 6^2 - 12b$$

$$a^2 - 12a + 6^2 - 12b = -59$$

$$a^2 - 12a + b^2 - 12b = -59$$

(a)
$$0, 7$$
 LHS $= 0 - 0 + 49 - 84 = -45$

(b)
$$5, 2$$
 LHS = $25 - 60 + 4 - 48$
= $-35 - 44$ 9
= -89 9

$$1 - 12 + 36 - 72 = -11 - 36 = -47$$

(d)
$$3,4$$
 $9-36+16-48=-27-32=-59$

Q) The mean of the numbers a, b, 8, 5, 10 is 6 and the variance is 6.80. Then which one of the following gives possible values of a and b?

- (a) a = 0, b = 7
- (b) a = 5, b = 2
- (c) a=1, b=6
- (d) a = 3, b = 4

Ans: (d)

Q) In a study on the relationship between investment (X) and profit (Y), the following two regression equations were obtained based on the data on X and Y

$$3X+Y-12=0$$

$$X + 2Y - 14 = 0$$

What is the mean \overline{X} ?

(a) 6

(b) 5

(c) 4

(d) 2

Q) In a study on the relationship between investment (X) and profit (Y), the following two regression equations were obtained based on the data on X and Y

$$3X+Y-12=0$$

$$X + 2Y - 14 = 0$$

What is the mean \overline{X} ?

(a) 6

(b) 5

(c) 4

(d) 2

Ans: (d)

Q) If the mean deviation of the numbers 1, 1 + d, 1 + 2d, ...

1 + 100d from their mean is 255, then d is equal to:

- (a) 20.0 (b) 10.1 (c) 20.2

10.0

Mean =
$$1 + (1+d) + (1+2d) + --- (1+100d)$$

$$= \underbrace{(1+1+--101 \text{ times}) + d(1+2+3--100)}_{101} = \underbrace{101 + d(100)(101)}_{2}$$

$$\frac{101 + d(100)(101)}{2} = 1 + 50d$$

Mean =
$$50d + 49d + 48d - - 0 + d + 2d + 3d - - - 50d$$

deviation 101

$$\frac{255}{101} = \frac{2(d+2d-...50d)}{101} = \frac{2d(1+2+3...50)}{101} = \frac{2d(50)(51)}{2} = 255$$

$$\frac{2d(50)(51)}{2} = 255$$

$$d = \frac{385 \times 10/}{50 \times 50} = \frac{10/}{10} = 10.1$$

$$d = 10.1$$

Q) If the mean deviation of the numbers 1, 1 + d, 1 + 2d, ...

1 + 100d from their mean is 255, then d is equal to:

- 20.0
- (b) 10.1 (c) 20.2

10.0

Ans: (b)

Q) Consider the following statements in respect of histogram:

 The histogram is a suitable representation of a frequency distribution of a continuous variable.

2. The area included under the whole histogram is the total frequency.

Which of the above statements is/are correct?

(a) 1 only

(b) 2 only

(c) Both 1 and 2

(d) Neither 1 nor 2

Area & Potal frequency

class intervals

- Q) Consider the following statements in respect of histogram:
 - 1. The histogram is a suitable representation of a frequency distribution of a continuous variable.
 - The area included under the whole histogram is the total frequency.

Which of the above statements is/are correct?

(a) 1 only

(b) 2 only

(c) Both 1 and 2

(d) Neither 1 nor 2

Ans: (a)

Q) The mean of the data set comprising of 16 observations is 16. If one of the observation valued 16 is deleted and three new observations valued 3, 4 and 5 are added to the data, then the mean of the resultant data, is:

$$\frac{(16 \times 16) - 16 + 3 + 4 + 5}{18} = \frac{256 - 16 + 12}{18} = \frac{252}{18} = \frac{14}{18}$$

Q) The mean of the data set comprising of 16 observations is 16. If one of the observation valued 16 is deleted and three new observations valued 3, 4 and 5 are added to the data, then the mean of the resultant data, is:

(a) 15.8

(b) 14.0

(c) 16.8

(d) 16.0

Ans: (b)

Q) If the standard deviation of the numbers 2, 3, a and 11 is 3.5, then which of the following is true?

(a)
$$3a^2 - 34a + 91 = 0$$

(a)
$$3a^2 - 34a + 91 = 0$$
 (b) $3a^2 - 23a + 44 = 0$

(c)
$$3a^2 - 26a + 55 = 0$$

(c)
$$3a^2-26a+55=0$$
 (d) $3a^2-32a+84=0$

Mean =
$$\frac{2+3+\alpha+1}{4}$$
 = $\frac{16+\alpha}{4}$ = $\frac{4+\frac{\alpha}{4}}{4}$
Standard deviation = $\sqrt{\frac{\xi(x_i^2-\overline{x})^2}{\eta}}$ = $\sqrt{\frac{\xi x_i^2}{\eta} - \left(\frac{\xi x_i^2}{\eta}\right)^2}$
= $\sqrt{\frac{\xi^2+3^2+\alpha^2+1}{\eta}} - \left(\overline{x}\right)^2$

$$\frac{a^{2}+3^{1}+o^{2}+11^{2}}{4} - (\bar{x})^{2} = (3.5)^{2}$$

$$\frac{a^{2}+134}{4} - (4+\frac{a}{4})^{2} = (3.5)^{2}$$

$$\frac{a^{2}}{4} + 33.5 - 16 - \frac{a^{2}}{16} - 2a = 12.25$$

$$\frac{3a^{2}}{16} - 2a = 16 + 12.25 - 33.5$$

$$\frac{3a^{2}-32a}{16} = -5.25 \Rightarrow 3a^{2}-32a + 84 = 0$$

$$(3a^{1}-32a+84=0)$$

 $(3a^2 - 32a + 84 = 0)$

Q) If the standard deviation of the numbers 2, 3, a and 11 is 3.5, then which of the following is true?

- (a) $3a^2 34a + 91 = 0$ (b) $3a^2 23a + 44 = 0$
- (c) $3a^2-26a+55=0$ (d) $3a^2-32a+84=0$

Ans: (d)

- **Q)** The regression lines will be perpendicular to each other if the coefficient of correlation *r* is equal to
 - (a) 1 only

(b) 1 or -1

(c) -1 only

(d) 0

$$\left(\frac{1}{r}\right) = \frac{1-r}{r}$$

Q) The regression lines will be perpendicular to each other if the coefficient of correlation r is equal to

(a) 1 only

(b) 1 or -1

(c) -1 only

(d) 0

Ans: (d)