CDS 2 2017 Elementary Mathematics Exam Important Questions

In this article we are taking most refined sample questions that are taken from math section of CDS question paper and presenting it to you,...

In this article we are taking most refined sample questions that are taken from math section of CDS question paper and presenting it to you, so have a look and see if you are comfortable in solving these kind of questions then only you have any chance of clearing the CDS exam.

CDS Exam Online Coaching

CDS 2 2017 Elementary Mathematics Exam Important Questions

NDA 2 2017 ENTRY

 

1. If the roots of the equation «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msup»«mi mathvariant=¨normal¨»lx«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mi mathvariant=¨normal¨»mx«/mi»«mo»+«/mo»«mi mathvariant=¨normal¨»m«/mi»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mn»0«/mn»«/math» are in the ration p:q, then Â«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msqrt»«mfrac»«mi mathvariant=¨normal¨»p«/mi»«mi mathvariant=¨normal¨»q«/mi»«/mfrac»«/msqrt»«mo»+«/mo»«msqrt»«mfrac»«mi mathvariant=¨normal¨»q«/mi»«mi mathvariant=¨normal¨»p«/mi»«/mfrac»«/msqrt»«mo»+«/mo»«msqrt»«mfrac»«mi mathvariant=¨normal¨»m«/mi»«mi mathvariant=¨normal¨»l«/mi»«/mfrac»«/msqrt»«/math» is equal to
a. 0
b. 1
c. 2
d. 3
Answer. a
2. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi mathvariant=¨normal¨»If«/mi»«mo»§nbsp;«/mo»«msqrt»«mrow»«mn»3«/mn»«msup»«mi mathvariant=¨normal¨»x«/mi»«mn»2«/mn»«/msup»«mo»-«/mo»«mn»7«/mn»«mi mathvariant=¨normal¨»x«/mi»«mo»-«/mo»«mn»30«/mn»«/mrow»«/msqrt»«mo»§nbsp;«/mo»«mo»-«/mo»«mo»§nbsp;«/mo»«msqrt»«mrow»«mn»2«/mn»«msup»«mi mathvariant=¨normal¨»x«/mi»«mn»2«/mn»«/msup»«mo»-«/mo»«mn»7«/mn»«mi mathvariant=¨normal¨»x«/mi»«mo»-«/mo»«mn»5«/mn»«/mrow»«/msqrt»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»-«/mo»«mn»5«/mn»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»has«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»§#945;«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»and«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»§#946;«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»as«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»its«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»roots«/mi»«mo»,«/mo»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»then«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»the«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»value«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»of«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»§#945;§#946;«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»is«/mi»«/math»
a. -15
b. -5
c. 0
d. 5
Answer. c
3. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi mathvariant=¨normal¨»if«/mi»«mo»§nbsp;«/mo»«mfrac»«mi mathvariant=¨normal¨»p«/mi»«mi mathvariant=¨normal¨»x«/mi»«/mfrac»«mo»+«/mo»«mfrac»«mi mathvariant=¨normal¨»q«/mi»«mi mathvariant=¨normal¨»y«/mi»«/mfrac»«mo»=«/mo»«mi mathvariant=¨normal¨»m«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»and«/mi»«mo»§nbsp;«/mo»«mfrac»«mi mathvariant=¨normal¨»q«/mi»«mi mathvariant=¨normal¨»x«/mi»«/mfrac»«mo»+«/mo»«mfrac»«mi mathvariant=¨normal¨»p«/mi»«mi mathvariant=¨normal¨»y«/mi»«/mfrac»«mo»=«/mo»«mi mathvariant=¨normal¨»n«/mi»«mo»,«/mo»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»then«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»what«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»is«/mi»«mo»§nbsp;«/mo»«mfrac»«mi mathvariant=¨normal¨»x«/mi»«mi mathvariant=¨normal¨»y«/mi»«/mfrac»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»equal«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»to«/mi»«mo»?«/mo»«/math»
a. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mrow»«mi mathvariant=¨normal¨»n«/mi»«mi mathvariant=¨normal¨»p«/mi»«mo»+«/mo»«mi mathvariant=¨normal¨»m«/mi»«mi mathvariant=¨normal¨»q«/mi»«/mrow»«mrow»«mi mathvariant=¨normal¨»m«/mi»«mi mathvariant=¨normal¨»p«/mi»«mo»+«/mo»«mi mathvariant=¨normal¨»n«/mi»«mi mathvariant=¨normal¨»q«/mi»«/mrow»«/mfrac»«/math»
b. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mrow»«mi mathvariant=¨normal¨»n«/mi»«mi mathvariant=¨normal¨»p«/mi»«mo»+«/mo»«mi mathvariant=¨normal¨»m«/mi»«mi mathvariant=¨normal¨»q«/mi»«/mrow»«mrow»«mi mathvariant=¨normal¨»mp«/mi»«mo»-«/mo»«mi mathvariant=¨normal¨»nq«/mi»«/mrow»«/mfrac»«/math»
c. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mrow»«mi mathvariant=¨normal¨»np«/mi»«mo»-«/mo»«mi mathvariant=¨normal¨»mq«/mi»«/mrow»«mrow»«mi mathvariant=¨normal¨»mp«/mi»«mo»-«/mo»«mi mathvariant=¨normal¨»nq«/mi»«/mrow»«/mfrac»«/math»
d. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mrow»«mi mathvariant=¨normal¨»np«/mi»«mo»-«/mo»«mi mathvariant=¨normal¨»mq«/mi»«/mrow»«mrow»«mi mathvariant=¨normal¨»mp«/mi»«mo»+«/mo»«mi mathvariant=¨normal¨»nq«/mi»«/mrow»«/mfrac»«/math»
Answer. c
4. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨left¨ rowspacing=¨0¨»«mtr»«mtd»«mi mathvariant=¨normal¨»If«/mi»«mo»§nbsp;«/mo»«msup»«mi mathvariant=¨normal¨»a«/mi»«mn»2«/mn»«/msup»«mo»-«/mo»«mi mathvariant=¨normal¨»by«/mi»«mo»-«/mo»«mi mathvariant=¨normal¨»cz«/mi»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mn»0«/mn»«mo»,«/mo»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»ax«/mi»«mo»-«/mo»«msup»«mi mathvariant=¨normal¨»b«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mi mathvariant=¨normal¨»cz«/mi»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mn»0«/mn»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»and«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»ax«/mi»«mo»+«/mo»«mi mathvariant=¨normal¨»by«/mi»«mo»-«/mo»«msup»«mi mathvariant=¨normal¨»c«/mi»«mn»2«/mn»«/msup»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mn»0«/mn»«mo»,«/mo»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»then«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»the«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»value«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»of«/mi»«/mtd»«/mtr»«mtr»«mtd/»«/mtr»«mtr»«mtd»«mfrac»«mi mathvariant=¨normal¨»x«/mi»«mrow»«mi mathvariant=¨normal¨»a«/mi»«mo»+«/mo»«mi mathvariant=¨normal¨»x«/mi»«/mrow»«/mfrac»«mo»+«/mo»«mfrac»«mi mathvariant=¨normal¨»y«/mi»«mrow»«mi mathvariant=¨normal¨»b«/mi»«mo»+«/mo»«mi mathvariant=¨normal¨»y«/mi»«/mrow»«/mfrac»«mo»+«/mo»«mfrac»«mi mathvariant=¨normal¨»z«/mi»«mrow»«mi mathvariant=¨normal¨»c«/mi»«mo»+«/mo»«mi mathvariant=¨normal¨»z«/mi»«/mrow»«/mfrac»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»will«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»be«/mi»«/mtd»«/mtr»«/mtable»«/math»
a. a+b+c
b. 3
c. 1
d. 0
Answer. c
5. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨left¨ rowspacing=¨0¨»«mtr»«mtd»«mi mathvariant=¨normal¨»If«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»the«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»equations«/mi»«mo»§nbsp;«/mo»«msup»«mi mathvariant=¨normal¨»x«/mi»«mn»2«/mn»«/msup»«mo»-«/mo»«mi mathvariant=¨normal¨»px«/mi»«mo»+«/mo»«mi mathvariant=¨normal¨»q«/mi»«mo»§nbsp;«/mo»«mo»=«/mo»«mn»0«/mn»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»and«/mi»«mo»§nbsp;«/mo»«msup»«mi mathvariant=¨normal¨»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mi mathvariant=¨normal¨»qx«/mi»«mo»-«/mo»«mi mathvariant=¨normal¨»p«/mi»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mn»0«/mn»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»have«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»a«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»common«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»root«/mi»«mo»,«/mo»«mo»§nbsp;«/mo»«/mtd»«/mtr»«mtr»«mtd»«mi mathvariant=¨normal¨»then«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»which«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»one«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»of«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»the«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»following«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»is«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»correct«/mi»«mo»?«/mo»«/mtd»«/mtr»«/mtable»«/math»
a. p-q = 0
b. p+q-2 = 0
c. p+q-1 = 0
d. p-q-1 = 0
Answer. d
6. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi mathvariant=¨normal¨»If«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«msup»«mn»2«/mn»«mfrac»«mn»1«/mn»«mn»3«/mn»«/mfrac»«/msup»«mo»+«/mo»«msup»«mn»2«/mn»«mrow»«mo»-«/mo»«mfrac»«mn»1«/mn»«mn»3«/mn»«/mfrac»«/mrow»«/msup»«mo»,«/mo»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»then«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»the«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»value«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»of«/mi»«mo»§nbsp;«/mo»«mn»2«/mn»«msup»«mi mathvariant=¨normal¨»x«/mi»«mn»3«/mn»«/msup»«mo»-«/mo»«mn»6«/mn»«mi mathvariant=¨normal¨»x«/mi»«mo»-«/mo»«mn»5«/mn»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»is«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»equal«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»to«/mi»«/math»
a. 0
b. 1
c. 2
d. 3
Answer. a
7. The sum and difference of two expression are «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mn»5«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»-«/mo»«mi»x«/mi»«mo»-«/mo»«mn»4«/mn»«/math» and «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»9«/mn»«mi»x«/mi»«mo»-«/mo»«mn»10«/mn»«/math» respectively. The HCF of two expressions will be
a. (x+1)
b. (x-1)
c. (3x+7)
d. (2x-3)
Answer. b
8. If (s-a)+(s-b)+(s-c) = s, then the value of Â«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mrow»«mo»(«/mo»«mi»s«/mi»«mo»-«/mo»«mi»a«/mi»«msup»«mo»)«/mo»«mn»2«/mn»«/msup»«mo»+«/mo»«mo»(«/mo»«mi»s«/mi»«mo»-«/mo»«mi»b«/mi»«msup»«mo»)«/mo»«mn»2«/mn»«/msup»«mo»+«/mo»«mo»(«/mo»«mi»s«/mi»«mo»-«/mo»«mi»c«/mi»«msup»«mo»)«/mo»«mn»2«/mn»«/msup»«mo»+«/mo»«msup»«mi»s«/mi»«mn»2«/mn»«/msup»«/mrow»«mrow»«msup»«mi»a«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«msup»«mi»b«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«msup»«mi»c«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfrac»«/math» will be
a. 3
b. 1
c. 0
d. -1
Answer. b
9.  Â«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨left¨ rowspacing=¨0¨»«mtr»«mtd»«mi mathvariant=¨normal¨»if«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»the«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»polynomial«/mi»«mo»§nbsp;«/mo»«msup»«mi mathvariant=¨normal¨»x«/mi»«mn»6«/mn»«/msup»«mo»+«/mo»«msup»«mi mathvariant=¨normal¨»px«/mi»«mn»5«/mn»«/msup»«mo»+«/mo»«msup»«mi mathvariant=¨normal¨»qx«/mi»«mn»4«/mn»«/msup»«mo»-«/mo»«msup»«mi mathvariant=¨normal¨»x«/mi»«mn»2«/mn»«/msup»«mo»-«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»-«/mo»«mn»3«/mn»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»is«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»divisible«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»by«/mi»«mo»§nbsp;«/mo»«mo»(«/mo»«msup»«mi mathvariant=¨normal¨»x«/mi»«mn»4«/mn»«/msup»«mo»-«/mo»«mn»1«/mn»«mo»)«/mo»«mo»,«/mo»«mo»§nbsp;«/mo»«/mtd»«/mtr»«mtr»«mtd»«mi mathvariant=¨normal¨»th«/mi»«mi mathvariant=¨normal¨»en«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»the«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»value«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»of«/mi»«mo»§nbsp;«/mo»«msup»«mi mathvariant=¨normal¨»p«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«msup»«mi mathvariant=¨normal¨»q«/mi»«mn»2«/mn»«/msup»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»is«/mi»«/mtd»«/mtr»«/mtable»«/math»
a. 1
b. 9
c. 10
d. 13
Answer. c
10. Let p and q be non-zero integers. Consider the polynomial A(x) = x^2 + px+q It is given that (x – m) and (x – km) are simple factors of A(x), where m is a non-zero integer and k is a positive integer, k ≥ 2. Which one of the following is correct?
a. cds22016mathq10a
b. cds22016mathq10b
c. cds22016mathq10c
d. cds22016mathq10d
Answer. b
11. Let m be a non-zero integer and n be a positive integer. Let R be the remainder obtained on dividing the polynomial X^n + M^n by (x-m). Then
a. R is a non-zero even integer
b. R is odd, if m is odd
c. R = s^2 for some integer s, if it is even
d. R = t^3 for some integer t, if 3 divides n
Answer. c
12. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi mathvariant=¨normal¨»If«/mi»«mo»§nbsp;«/mo»«mn»4«/mn»«mi mathvariant=¨normal¨»x«/mi»«mn»2«/mn»«mi mathvariant=¨normal¨»y«/mi»«mo»=«/mo»«mn»128«/mn»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»and«/mi»«mo»§nbsp;«/mo»«mn»33«/mn»«mi mathvariant=¨normal¨»x«/mi»«mn»32«/mn»«mi mathvariant=¨normal¨»y«/mi»«mo»-«/mo»«mn»9«/mn»«mi mathvariant=¨normal¨»xy«/mi»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mn»0«/mn»«mo»,«/mo»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»then«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»the«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»value«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»of«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»+«/mo»«mi mathvariant=¨normal¨»y«/mi»«mo»§nbsp;«/mo»«mo»=«/mo»«/math»
a. 7
b. 5
c. 3
d. 1
Answer. b
13. if the linear factors of «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»a«/mi»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»-«/mo»«mo»(«/mo»«msup»«mi»a«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«mo»)«/mo»«mi»x«/mi»«mo»+«/mo»«mi»a«/mi»«/math»  are p and q, then p+q is equal to
a. (x-1)(a+1)
b. (x+1)(a+1)
c. (x-1)(a-1)
d. (x+1)(a-1)
Answer. d
14. If «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»x«/mi»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mfrac»«mrow»«msqrt»«mrow»«mi»a«/mi»«mo»+«/mo»«mn»2«/mn»«mi»b«/mi»«/mrow»«/msqrt»«mo»+«/mo»«msqrt»«mrow»«mi»a«/mi»«mo»-«/mo»«mn»2«/mn»«mi»b«/mi»«/mrow»«/msqrt»«/mrow»«mrow»«msqrt»«mrow»«mi»a«/mi»«mo»+«/mo»«mn»2«/mn»«mi»b«/mi»«/mrow»«/msqrt»«mo»-«/mo»«msqrt»«mrow»«mi»a«/mi»«mo»-«/mo»«mn»2«/mn»«mi»b«/mi»«/mrow»«/msqrt»«/mrow»«/mfrac»«/math» then «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msup»«mi mathvariant=¨normal¨»bx«/mi»«mn»2«/mn»«/msup»«mo»-«/mo»«mi mathvariant=¨normal¨»ax«/mi»«mo»+«/mo»«mi mathvariant=¨normal¨»b«/mi»«/math» is equal to (given that b≠0)
a. 0
b. 1
c. ab
d. 2ab
Answer. a
15. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨left¨ rowspacing=¨0¨»«mtr»«mtd»«mi mathvariant=¨normal¨»If«/mi»«mo»§nbsp;«/mo»«msup»«mi mathvariant=¨normal¨»a«/mi»«mn»3«/mn»«/msup»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mn»117«/mn»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«msup»«mi mathvariant=¨normal¨»b«/mi»«mn»3«/mn»«/msup»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»and«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»a«/mi»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mn»3«/mn»«mo»+«/mo»«mi mathvariant=¨normal¨»b«/mi»«mo»,«/mo»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»then«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»the«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»value«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»of«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»a«/mi»«mo»+«/mo»«mi mathvariant=¨normal¨»b«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»is«/mi»«/mtd»«/mtr»«mtr»«mtd»«mo»(«/mo»«mi mathvariant=¨normal¨»given«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»that«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»a«/mi»«mo»§gt;«/mo»«mn»0«/mn»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»and«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»b«/mi»«mo»§gt;«/mo»«mn»0«/mn»«mo»)«/mo»«/mtd»«/mtr»«/mtable»«/math»
a. 7
b. 9
c. 11
d. 13
Picture of Ashutosh

Ashutosh

Defence exams mentor, cracked CDS and AFCAT exams.