CDS 2 2017 Elementary Mathematics Exam Important Questions

In this article we are taking most refined sample questions that are taken from math section of CDS question paper and presenting it to you, so have a look and...

In this article we are taking most refined sample questions that are taken from math section of CDS question paper and presenting it to you, so have a look and see if you are comfortable in solving these kind of questions then only you have any chance of clearing the CDS exam.

CDS Exam Online Coaching

CDS 2 2017 Elementary Mathematics Exam Important Questions

NDA 2 2017 ENTRY

 

1. If the roots of the equation «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msup»«mi mathvariant=¨normal¨»lx«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mi mathvariant=¨normal¨»mx«/mi»«mo»+«/mo»«mi mathvariant=¨normal¨»m«/mi»«moȤnbsp;«/mo»«mo»=«/mo»«moȤnbsp;«/mo»«mn»0«/mn»«/math» are in the ration p:q, then Â«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msqrt»«mfrac»«mi mathvariant=¨normal¨»p«/mi»«mi mathvariant=¨normal¨»q«/mi»«/mfrac»«/msqrt»«mo»+«/mo»«msqrt»«mfrac»«mi mathvariant=¨normal¨»q«/mi»«mi mathvariant=¨normal¨»p«/mi»«/mfrac»«/msqrt»«mo»+«/mo»«msqrt»«mfrac»«mi mathvariant=¨normal¨»m«/mi»«mi mathvariant=¨normal¨»l«/mi»«/mfrac»«/msqrt»«/math» is equal to
a. 0
b. 1
c. 2
d. 3
Answer. a
2. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi mathvariant=¨normal¨»If«/mi»«mo»§nbsp;«/mo»«msqrt»«mrow»«mn»3«/mn»«msup»«mi mathvariant=¨normal¨»x«/mi»«mn»2«/mn»«/msup»«mo»-«/mo»«mn»7«/mn»«mi mathvariant=¨normal¨»x«/mi»«mo»-«/mo»«mn»30«/mn»«/mrow»«/msqrt»«mo»§nbsp;«/mo»«mo»-«/mo»«mo»§nbsp;«/mo»«msqrt»«mrow»«mn»2«/mn»«msup»«mi mathvariant=¨normal¨»x«/mi»«mn»2«/mn»«/msup»«mo»-«/mo»«mn»7«/mn»«mi mathvariant=¨normal¨»x«/mi»«mo»-«/mo»«mn»5«/mn»«/mrow»«/msqrt»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»-«/mo»«mn»5«/mn»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»has«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»§#945;«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»and«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»§#946;«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»as«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»its«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»roots«/mi»«mo»,«/mo»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»then«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»the«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»value«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»of«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»§#945;§#946;«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»is«/mi»«/math»
a. -15
b. -5
c. 0
d. 5
Answer. c
3. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi mathvariant=¨normal¨»if«/mi»«mo»§nbsp;«/mo»«mfrac»«mi mathvariant=¨normal¨»p«/mi»«mi mathvariant=¨normal¨»x«/mi»«/mfrac»«mo»+«/mo»«mfrac»«mi mathvariant=¨normal¨»q«/mi»«mi mathvariant=¨normal¨»y«/mi»«/mfrac»«mo»=«/mo»«mi mathvariant=¨normal¨»m«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»and«/mi»«mo»§nbsp;«/mo»«mfrac»«mi mathvariant=¨normal¨»q«/mi»«mi mathvariant=¨normal¨»x«/mi»«/mfrac»«mo»+«/mo»«mfrac»«mi mathvariant=¨normal¨»p«/mi»«mi mathvariant=¨normal¨»y«/mi»«/mfrac»«mo»=«/mo»«mi mathvariant=¨normal¨»n«/mi»«mo»,«/mo»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»then«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»what«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»is«/mi»«mo»§nbsp;«/mo»«mfrac»«mi mathvariant=¨normal¨»x«/mi»«mi mathvariant=¨normal¨»y«/mi»«/mfrac»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»equal«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»to«/mi»«mo»?«/mo»«/math»
a. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mrow»«mi mathvariant=¨normal¨»n«/mi»«mi mathvariant=¨normal¨»p«/mi»«mo»+«/mo»«mi mathvariant=¨normal¨»m«/mi»«mi mathvariant=¨normal¨»q«/mi»«/mrow»«mrow»«mi mathvariant=¨normal¨»m«/mi»«mi mathvariant=¨normal¨»p«/mi»«mo»+«/mo»«mi mathvariant=¨normal¨»n«/mi»«mi mathvariant=¨normal¨»q«/mi»«/mrow»«/mfrac»«/math»
b. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mrow»«mi mathvariant=¨normal¨»n«/mi»«mi mathvariant=¨normal¨»p«/mi»«mo»+«/mo»«mi mathvariant=¨normal¨»m«/mi»«mi mathvariant=¨normal¨»q«/mi»«/mrow»«mrow»«mi mathvariant=¨normal¨»mp«/mi»«mo»-«/mo»«mi mathvariant=¨normal¨»nq«/mi»«/mrow»«/mfrac»«/math»
c. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mrow»«mi mathvariant=¨normal¨»np«/mi»«mo»-«/mo»«mi mathvariant=¨normal¨»mq«/mi»«/mrow»«mrow»«mi mathvariant=¨normal¨»mp«/mi»«mo»-«/mo»«mi mathvariant=¨normal¨»nq«/mi»«/mrow»«/mfrac»«/math»
d. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mrow»«mi mathvariant=¨normal¨»np«/mi»«mo»-«/mo»«mi mathvariant=¨normal¨»mq«/mi»«/mrow»«mrow»«mi mathvariant=¨normal¨»mp«/mi»«mo»+«/mo»«mi mathvariant=¨normal¨»nq«/mi»«/mrow»«/mfrac»«/math»
Answer. c
4. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨left¨ rowspacing=¨0¨»«mtr»«mtd»«mi mathvariant=¨normal¨»If«/mi»«mo»§nbsp;«/mo»«msup»«mi mathvariant=¨normal¨»a«/mi»«mn»2«/mn»«/msup»«mo»-«/mo»«mi mathvariant=¨normal¨»by«/mi»«mo»-«/mo»«mi mathvariant=¨normal¨»cz«/mi»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mn»0«/mn»«mo»,«/mo»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»ax«/mi»«mo»-«/mo»«msup»«mi mathvariant=¨normal¨»b«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mi mathvariant=¨normal¨»cz«/mi»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mn»0«/mn»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»and«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»ax«/mi»«mo»+«/mo»«mi mathvariant=¨normal¨»by«/mi»«mo»-«/mo»«msup»«mi mathvariant=¨normal¨»c«/mi»«mn»2«/mn»«/msup»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mn»0«/mn»«mo»,«/mo»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»then«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»the«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»value«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»of«/mi»«/mtd»«/mtr»«mtr»«mtd/»«/mtr»«mtr»«mtd»«mfrac»«mi mathvariant=¨normal¨»x«/mi»«mrow»«mi mathvariant=¨normal¨»a«/mi»«mo»+«/mo»«mi mathvariant=¨normal¨»x«/mi»«/mrow»«/mfrac»«mo»+«/mo»«mfrac»«mi mathvariant=¨normal¨»y«/mi»«mrow»«mi mathvariant=¨normal¨»b«/mi»«mo»+«/mo»«mi mathvariant=¨normal¨»y«/mi»«/mrow»«/mfrac»«mo»+«/mo»«mfrac»«mi mathvariant=¨normal¨»z«/mi»«mrow»«mi mathvariant=¨normal¨»c«/mi»«mo»+«/mo»«mi mathvariant=¨normal¨»z«/mi»«/mrow»«/mfrac»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»will«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»be«/mi»«/mtd»«/mtr»«/mtable»«/math»
a. a+b+c
b. 3
c. 1
d. 0
Answer. c
5. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨left¨ rowspacing=¨0¨»«mtr»«mtd»«mi mathvariant=¨normal¨»If«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»the«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»equations«/mi»«mo»§nbsp;«/mo»«msup»«mi mathvariant=¨normal¨»x«/mi»«mn»2«/mn»«/msup»«mo»-«/mo»«mi mathvariant=¨normal¨»px«/mi»«mo»+«/mo»«mi mathvariant=¨normal¨»q«/mi»«mo»§nbsp;«/mo»«mo»=«/mo»«mn»0«/mn»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»and«/mi»«mo»§nbsp;«/mo»«msup»«mi mathvariant=¨normal¨»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mi mathvariant=¨normal¨»qx«/mi»«mo»-«/mo»«mi mathvariant=¨normal¨»p«/mi»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mn»0«/mn»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»have«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»a«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»common«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»root«/mi»«mo»,«/mo»«mo»§nbsp;«/mo»«/mtd»«/mtr»«mtr»«mtd»«mi mathvariant=¨normal¨»then«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»which«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»one«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»of«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»the«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»following«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»is«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»correct«/mi»«mo»?«/mo»«/mtd»«/mtr»«/mtable»«/math»
a. p-q = 0
b. p+q-2 = 0
c. p+q-1 = 0
d. p-q-1 = 0
Answer. d
6. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi mathvariant=¨normal¨»If«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«msup»«mn»2«/mn»«mfrac»«mn»1«/mn»«mn»3«/mn»«/mfrac»«/msup»«mo»+«/mo»«msup»«mn»2«/mn»«mrow»«mo»-«/mo»«mfrac»«mn»1«/mn»«mn»3«/mn»«/mfrac»«/mrow»«/msup»«mo»,«/mo»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»then«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»the«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»value«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»of«/mi»«mo»§nbsp;«/mo»«mn»2«/mn»«msup»«mi mathvariant=¨normal¨»x«/mi»«mn»3«/mn»«/msup»«mo»-«/mo»«mn»6«/mn»«mi mathvariant=¨normal¨»x«/mi»«mo»-«/mo»«mn»5«/mn»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»is«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»equal«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»to«/mi»«/math»
a. 0
b. 1
c. 2
d. 3
Answer. a
7. The sum and difference of two expression are «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mn»5«/mn»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»-«/mo»«mi»x«/mi»«mo»-«/mo»«mn»4«/mn»«/math» and «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»9«/mn»«mi»x«/mi»«mo»-«/mo»«mn»10«/mn»«/math» respectively. The HCF of two expressions will be
a. (x+1)
b. (x-1)
c. (3x+7)
d. (2x-3)
Answer. b
8. If (s-a)+(s-b)+(s-c) = s, then the value of Â«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mrow»«mo»(«/mo»«mi»s«/mi»«mo»-«/mo»«mi»a«/mi»«msup»«mo»)«/mo»«mn»2«/mn»«/msup»«mo»+«/mo»«mo»(«/mo»«mi»s«/mi»«mo»-«/mo»«mi»b«/mi»«msup»«mo»)«/mo»«mn»2«/mn»«/msup»«mo»+«/mo»«mo»(«/mo»«mi»s«/mi»«mo»-«/mo»«mi»c«/mi»«msup»«mo»)«/mo»«mn»2«/mn»«/msup»«mo»+«/mo»«msup»«mi»s«/mi»«mn»2«/mn»«/msup»«/mrow»«mrow»«msup»«mi»a«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«msup»«mi»b«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«msup»«mi»c«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfrac»«/math» will be
a. 3
b. 1
c. 0
d. -1
Answer. b
9.  Â«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨left¨ rowspacing=¨0¨»«mtr»«mtd»«mi mathvariant=¨normal¨»if«/mi»«moȤnbsp;«/mo»«mi mathvariant=¨normal¨»the«/mi»«moȤnbsp;«/mo»«mi mathvariant=¨normal¨»polynomial«/mi»«moȤnbsp;«/mo»«msup»«mi mathvariant=¨normal¨»x«/mi»«mn»6«/mn»«/msup»«mo»+«/mo»«msup»«mi mathvariant=¨normal¨»px«/mi»«mn»5«/mn»«/msup»«mo»+«/mo»«msup»«mi mathvariant=¨normal¨»qx«/mi»«mn»4«/mn»«/msup»«mo»-«/mo»«msup»«mi mathvariant=¨normal¨»x«/mi»«mn»2«/mn»«/msup»«mo»-«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»-«/mo»«mn»3«/mn»«moȤnbsp;«/mo»«mi mathvariant=¨normal¨»is«/mi»«moȤnbsp;«/mo»«mi mathvariant=¨normal¨»divisible«/mi»«moȤnbsp;«/mo»«mi mathvariant=¨normal¨»by«/mi»«moȤnbsp;«/mo»«mo»(«/mo»«msup»«mi mathvariant=¨normal¨»x«/mi»«mn»4«/mn»«/msup»«mo»-«/mo»«mn»1«/mn»«mo»)«/mo»«mo»,«/mo»«moȤnbsp;«/mo»«/mtd»«/mtr»«mtr»«mtd»«mi mathvariant=¨normal¨»th«/mi»«mi mathvariant=¨normal¨»en«/mi»«moȤnbsp;«/mo»«mi mathvariant=¨normal¨»the«/mi»«moȤnbsp;«/mo»«mi mathvariant=¨normal¨»value«/mi»«moȤnbsp;«/mo»«mi mathvariant=¨normal¨»of«/mi»«moȤnbsp;«/mo»«msup»«mi mathvariant=¨normal¨»p«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«msup»«mi mathvariant=¨normal¨»q«/mi»«mn»2«/mn»«/msup»«moȤnbsp;«/mo»«mi mathvariant=¨normal¨»is«/mi»«/mtd»«/mtr»«/mtable»«/math»
a. 1
b. 9
c. 10
d. 13
Answer. c
10. Let p and q be non-zero integers. Consider the polynomial A(x) = x^2 + px+q It is given that (x – m) and (x – km) are simple factors of A(x), where m is a non-zero integer and k is a positive integer, k ≥ 2. Which one of the following is correct?
a. cds22016mathq10a
b. cds22016mathq10b
c. cds22016mathq10c
d. cds22016mathq10d
Answer. b
11. Let m be a non-zero integer and n be a positive integer. Let R be the remainder obtained on dividing the polynomial X^n + M^n by (x-m). Then
a. R is a non-zero even integer
b. R is odd, if m is odd
c. R = s^2 for some integer s, if it is even
d. R = t^3 for some integer t, if 3 divides n
Answer. c
12. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi mathvariant=¨normal¨»If«/mi»«mo»§nbsp;«/mo»«mn»4«/mn»«mi mathvariant=¨normal¨»x«/mi»«mn»2«/mn»«mi mathvariant=¨normal¨»y«/mi»«mo»=«/mo»«mn»128«/mn»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»and«/mi»«mo»§nbsp;«/mo»«mn»33«/mn»«mi mathvariant=¨normal¨»x«/mi»«mn»32«/mn»«mi mathvariant=¨normal¨»y«/mi»«mo»-«/mo»«mn»9«/mn»«mi mathvariant=¨normal¨»xy«/mi»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mn»0«/mn»«mo»,«/mo»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»then«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»the«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»value«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»of«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»+«/mo»«mi mathvariant=¨normal¨»y«/mi»«mo»§nbsp;«/mo»«mo»=«/mo»«/math»
a. 7
b. 5
c. 3
d. 1
Answer. b
13. if the linear factors of «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»a«/mi»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«mo»-«/mo»«mo»(«/mo»«msup»«mi»a«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»1«/mn»«mo»)«/mo»«mi»x«/mi»«mo»+«/mo»«mi»a«/mi»«/math»  are p and q, then p+q is equal to
a. (x-1)(a+1)
b. (x+1)(a+1)
c. (x-1)(a-1)
d. (x+1)(a-1)
Answer. d
14. If «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»x«/mi»«moȤnbsp;«/mo»«mo»=«/mo»«moȤnbsp;«/mo»«mfrac»«mrow»«msqrt»«mrow»«mi»a«/mi»«mo»+«/mo»«mn»2«/mn»«mi»b«/mi»«/mrow»«/msqrt»«mo»+«/mo»«msqrt»«mrow»«mi»a«/mi»«mo»-«/mo»«mn»2«/mn»«mi»b«/mi»«/mrow»«/msqrt»«/mrow»«mrow»«msqrt»«mrow»«mi»a«/mi»«mo»+«/mo»«mn»2«/mn»«mi»b«/mi»«/mrow»«/msqrt»«mo»-«/mo»«msqrt»«mrow»«mi»a«/mi»«mo»-«/mo»«mn»2«/mn»«mi»b«/mi»«/mrow»«/msqrt»«/mrow»«/mfrac»«/math» then «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msup»«mi mathvariant=¨normal¨»bx«/mi»«mn»2«/mn»«/msup»«mo»-«/mo»«mi mathvariant=¨normal¨»ax«/mi»«mo»+«/mo»«mi mathvariant=¨normal¨»b«/mi»«/math» is equal to (given that b≠0)
a. 0
b. 1
c. ab
d. 2ab
Answer. a
15. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨left¨ rowspacing=¨0¨»«mtr»«mtd»«mi mathvariant=¨normal¨»If«/mi»«mo»§nbsp;«/mo»«msup»«mi mathvariant=¨normal¨»a«/mi»«mn»3«/mn»«/msup»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mn»117«/mn»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«msup»«mi mathvariant=¨normal¨»b«/mi»«mn»3«/mn»«/msup»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»and«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»a«/mi»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mn»3«/mn»«mo»+«/mo»«mi mathvariant=¨normal¨»b«/mi»«mo»,«/mo»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»then«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»the«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»value«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»of«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»a«/mi»«mo»+«/mo»«mi mathvariant=¨normal¨»b«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»is«/mi»«/mtd»«/mtr»«mtr»«mtd»«mo»(«/mo»«mi mathvariant=¨normal¨»given«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»that«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»a«/mi»«mo»§gt;«/mo»«mn»0«/mn»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»and«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»b«/mi»«mo»§gt;«/mo»«mn»0«/mn»«mo»)«/mo»«/mtd»«/mtr»«/mtable»«/math»
a. 7
b. 9
c. 11
d. 13

Leave Your Comment

Related Posts

Recent Posts